
“数据分析不只是统计方法,更重要的是贴近业务的需求分析、实施过程、与效果评估。真正了解一个行业,就要接触到这个行业的遗产,目前商业数据分析遗产基本上都是以SAS的形式出现的。如果说SAS的遗产是100的话,其他软件的遗产加在一起不超过50。”_摘自CDA SAS金牌讲师常老师语录。
SAS的优点不胜枚举,某知乎网友的总结供大家参考:
1. 权威认证:SAS认证被美国企业界评为“最有价值认证”,SAS被评为雇主最认可的企业级统计软件。被誉为全美福利最好的企业,Google在制定公司园区的福利安排时,就曾以SAS为模板;
2. 功能强大:SAS系统是一个组合的软件系统,并具有比较灵活的功能扩展接口和强大的功能模块,在BASE SAS的基础上,还可以增加如下不同的模块而增加不同的功能,SAS EG(可视化统计分析)、SAS EM(数据挖掘)、SAS QC(质量控制)、SAS GRAPH(绘图系统)等;
3. 运行快速:SAS基于硬盘运行的数据处理和分析机制,使得SAS可以在本机进行大数据分析和处理;
4. 适用性强:SAS几乎可以运用在一切数据分析的行业、领域及场景,信贷风险建模、反欺诈模型、客户关系管理、电信离网用户预警、网站行为关联分析商品关联规则等。
培训信息
地点 |
课程 |
时间 |
讲师 |
费用 |
报名 |
北京 |
SAS数据挖掘 |
6月25-26日 7月02-03日 7月09-10日 |
翟祥 |
5900元/人 |
|
上海 |
SAS数据挖掘 |
6月4-5日 6月11-12日 6月18-19日 |
徐刚 |
5900元/人 |
|
远程 |
SAS数据挖掘 |
6月25-7月10日 6月4-19日
|
翟祥、徐刚 |
4400元/人 |
课程大纲
第一部分:编程基础 1、编程基础介绍 1.1 SAS 入门与基本语法 2 、访问与展示数据 2.1 认识 SAS数据和逻辑库 2.2 深入理解 SAS 数据类型 3、数据管理和操纵 3.1 创建变量 3.2 数据循环处理 3.3 合并 SAS数据集 3.4 重组数据集 4、 数据描述和图表制作
第二部分:SAS数据分析基础与高级编程 1、SQL过程简介 2、SAS宏语言 2.1 宏编译器的运行机制、宏变量 2.2 通过Data和sql步创建宏变量 2.3 定义宏和定义宏参数 2.4 宏中的分支流程语句 2.5 宏中的循环流程语句
1. 数据挖掘简介、方法论、技术介绍 2. SASEM界面与节点介绍 4. 决策树、组合算法、以及辅助应用 5. 神经网络 7. SVM、贝叶斯网络和其他模型介绍 8.模型评估 9.优化(两阶段模型)
13、聚类分析 13.1聚类分析流程 13.2 快速聚类 13.3谱聚类、密度聚类和其他聚类 14、关联规则 14.1 关联规则 14.2 序贯模型
|
讲师介绍:
翟祥:人民大学统计学博士,北京林业大学管理学院统计系教授,SAS公司骨灰级讲师。长期从事金融、电信、零售行业数据挖掘咨询工作。
徐筱刚:男,高级数据分析师,具有深厚的数理统计与应用数据分析专业背景,上海某金融机构数据分析部门高级DA,具有八年数据分析、数据挖掘的从业经验,曾就职零售企业、咨询公司等,独立或带团队完成零售、电信、金融等多个大型数据挖掘项目。
主要案例:
1.构建数据集操作示例演示和描述性分析(流失预测模型);
2.数据清洗案例;
3.老兵捐款案例;
4.销售提升数据进行操作演示和练习;
5.客户流失模型演示和练习;
6.保险客户流失;
7.SAS编程构造信用评分模型(进件评分卡);
8.银行产品关联分析。
报名流程:
1.在线填写报名信息:
2.给予反馈,确认报名信息
3.网上缴费
4.开课前一周发送电子版课件和教室路线图
优惠多多:
1. 全日制学生及CDA LEVEL Ⅰ老学员8折优惠(学生证证明文件);
2. 同一单位三人及以上报名9折优惠,五人及以上8折优惠;
4. 老学员9折优惠;
学员对象:
1.各行业数据分析、数据挖掘从业者
2.金融、电信、零售、医学等各行业业务数据分析人员
3.政府事业单位大数据及数据挖掘项目人员
4.数据挖掘岗位就业、提拔涨薪、技能优化等从业人员
5.对数据挖掘感兴趣的各界人员
关于证书:
CDA考试安排:
1. 考试时间2016年6月26日
2. 考试内容:CDA LEVLE Ⅱ建模分析师大纲。
3. 报名费用:1500元/人。参加CDA系统培训学员费用为1000/人。
4. 其他:CDA考试一次不过可申请补考,补考费用为原价一半。证书3年审核一次。
5. 报考链接: http://exam.cda.cn/
咨询方式:
电话:010-68411404
手机:18010006628(陈老师)QQ:2881989709
18511302788(王老师)QQ:2881989710
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
机器学习解决实际问题的核心关键:从业务到落地的全流程解析 在人工智能技术落地的浪潮中,机器学习作为核心工具,已广泛应用于 ...
2025-09-09SPSS 编码状态区域中 Unicode 的功能与价值解析 在 SPSS(Statistical Product and Service Solutions,统计产品与服务解决方案 ...
2025-09-09CDA 数据分析师:驾驭商业数据分析流程的核心力量 在商业决策从 “经验驱动” 向 “数据驱动” 转型的过程中,商业数据分析总体 ...
2025-09-09R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08在商业竞争日益激烈的当下,“用数据说话” 已从企业的 “加分项” 变为 “生存必需”。然而,零散的数据分析无法持续为业务赋能 ...
2025-09-08随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04CDA 数据分析师:驾驭数据范式,释放数据价值 在数字化转型浪潮席卷全球的当下,数据已成为企业核心生产要素。而 CDA(Certified ...
2025-09-04K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03CDA 数据分析师与数据分析:解锁数据价值的关键 在数字经济高速发展的今天,数据已成为企业核心资产与社会发展的重要驱动力。无 ...
2025-09-03解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02CDA 数据分析师:助力企业破解数据需求与数据分析需求难题 在数字化浪潮席卷全球的当下,数据已成为企业核心战略资产。无论是市 ...
2025-09-02Power BI 度量值实战:基于每月收入与税金占比计算累计税金分摊金额 在企业财务分析中,税金分摊是成本核算与利润统计的核心环节 ...
2025-09-01巧用 ALTER TABLE rent ADD INDEX:租房系统数据库性能优化实践 在租房管理系统中,rent表是核心业务表之一,通常存储租赁订单信 ...
2025-09-01