京公网安备 11010802034615号
经营许可证编号:京B2-20210330
把数据挖掘应用到工作中
数据挖掘通常要处理大量的数据,需要有方便操作的工具,但是,一般情况下这些工具的价格都很高。
如今,企业需要考虑投资效果,不会随便投入大量资金。因此,我排荐使用Excel的数据挖掘工具(加载宏软件)。根据不同的功能需求,可以在工作中灵活使用Excel的加载宏软件、同样可以很好地满足数据挖掘的目的需求。
一、用数据挖掘得出假设,用实验规划进行检验
如果数据挖掘得出了假设,那么能否使用数据分析方法之一的联合分析检验假设呢?联合分析是20世纪80年代在美国快速发展的市场营销领域版实验规划法。广告词是“开发畅销产品的概念组合”。用虚拟变量的回归分析解析联合分析的数据。
为了调查哪种简易的网络教育书籍最受欢迎,进行一项问卷调查,回收井分析数据.设定因子和项目,如下图所示:
根据分析结果可知,主要因子和项目是“图形丰富”、“有详细的问题解答”、“大量插图”的书籍最受欢迎。关于联合分析Excel网小编将在后面文章中详细说明。
二、学习线性代数
盲目使用工具很危险,最好预先掌握作为统计学基础的线性代数,尤其是逆矩阵和特征值,这是线性代数的两大课题。
多重回归分析、数量化理论I通过求解逆矩阵可以得出答案,但是根据不同数据类型,有时下需要求逆矩阵。此吋,统计软件可能会输出某些错误信息,所以不一定都是便利的工具。虽然经常出现秩亏,但是只要掌握了线性代数,就能坦然应对。解决秩亏的方法有两种:①使用规划求解②使用一般逆矩阵。笔者知道S-PLUS可以求解逆矩阵,目前急需开发Excel的此项功能。
三、学习一般逆矩阵和异常值分解法
如上所述,一般逆矩阵的应用范围十分广泛,现在非常希望普及异常值分解的方法。分解矩阵异常值的软件,在数据挖掘中备受重视。异常值分解的函数,例如,S语言(样本版R)支持异常值分解(SvD SmsularValue DocomPosition)。对应分析(双尺度法)也归结为异常值分解。因此,异常值分解的应用范围不断扩大。与一般逆矩阵相似.急需在Excel的加载宏软件上实现异常值分解的功能。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在 MySQL 实际应用中,“频繁写入同一表” 是常见场景 —— 如实时日志存储(用户操作日志、系统运行日志)、高频交易记录(支付 ...
2025-10-30为帮助教育工作者、研究者科学分析 “班级规模” 与 “平均成绩” 的关联关系,我将从相关系数的核心定义与类型切入,详解 “数 ...
2025-10-30对 CDA(Certified Data Analyst)数据分析师而言,“相关系数” 不是简单的数字计算,而是 “从业务问题出发,量化变量间关联强 ...
2025-10-30在构建前向神经网络(Feedforward Neural Network,简称 FNN)时,“隐藏层数目设多少?每个隐藏层该放多少个神经元?” 是每个 ...
2025-10-29这个问题切中了 Excel 用户的常见困惑 —— 将 “数据可视化工具” 与 “数据挖掘算法” 的功能边界混淆。核心结论是:Excel 透 ...
2025-10-29在 CDA(Certified Data Analyst)数据分析师的工作中,“多组数据差异验证” 是高频需求 —— 例如 “3 家门店的销售额是否有显 ...
2025-10-29在数据分析中,“正态分布” 是许多统计方法(如 t 检验、方差分析、线性回归)的核心假设 —— 数据符合正态分布时,统计检验的 ...
2025-10-28箱线图(Box Plot)作为展示数据分布的核心统计图表,能直观呈现数据的中位数、四分位数、离散程度与异常值,是质量控制、实验分 ...
2025-10-28在 CDA(Certified Data Analyst)数据分析师的工作中,“分类变量关联分析” 是高频需求 —— 例如 “用户性别是否影响支付方式 ...
2025-10-28在数据可视化领域,单一图表往往难以承载多维度信息 —— 力导向图擅长展现节点间的关联结构与空间分布,却无法直观呈现 “流量 ...
2025-10-27这个问题问到了 Tableau 中两个核心行级函数的经典组合,理解它能帮你快速实现 “相对位置占比” 的分析需求。“index ()/size ( ...
2025-10-27对 CDA(Certified Data Analyst)数据分析师而言,“假设检验” 绝非 “套用统计公式的机械操作”,而是 “将模糊的业务猜想转 ...
2025-10-27在数字化运营中,“凭感觉做决策” 早已成为过去式 —— 运营指标作为业务增长的 “晴雨表” 与 “导航仪”,直接决定了运营动作 ...
2025-10-24在卷积神经网络(CNN)的训练中,“卷积层(Conv)后是否添加归一化(如 BN、LN)和激活函数(如 ReLU、GELU)” 是每个开发者都 ...
2025-10-24在数据决策链条中,“统计分析” 是挖掘数据规律的核心,“可视化” 是呈现规律的桥梁 ——CDA(Certified Data Analyst)数据分 ...
2025-10-24在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22