京公网安备 11010802034615号
经营许可证编号:京B2-20210330
很多人问数据挖掘和统计分析的不同之处是什么?相同之处是什么?这样的问题,其实数据挖掘和统计分析的基础都是数学理论。
数据挖掘是直接从庞大的数据中挖掘,而统计分析则是从庞大的数据(总体)中,用随机抽样的方法抽取一部分数据(样本)。通过分析样本数据来推测总体特性(平均、比例、标准偏差等)的统计方法,被称为推测统计学。另外,统计学中还有记述统计学,它足一种能够正确记述并把握获得的数据特性的方法。甚至可以说,记述统计学+其他=数据挖掘。
数据挖掘的目的是从数据中挖掘有效信息。为了实现这个目,可以使用神经网络、购物篮分析以及“多变量分析”的数量化理论、判别分析、回归分析、逻辑回归分析、聚类分析、主成分分析、因子分析、对应分析(双尺度祛)、典型相关分析、联合分析等方法。多变量分析是将相互关联的多变量的数据特征或趋势,用统计学方法进行分析的方法的总称。多变量分析是数据挖掘的重要方法之一,包括各种统计分析方法(如下图):
如果单纯考虑数量化理论或者回归分析等统计分析方法就会发现,虽然分析过程具有很强的数学性,然而操作却只不过是“计算”而已。为了实现数据挖掘的目的,把统计学方法单独或者组合使用,是非常有效的数据分析方法。例如,回归分析在“预测”和“因子分析”时十分有效。另外,极力推荐把聚类分析和判别分析组合之后挖掘数据。
在人类基因组领域中,先通过聚类分析,例如,将总体分成5组,再按照外在基准对5组小集合进行判别分析。经过两个阶段的分析后,再进行判别预测和因子分析。就能分别得出5组小集合的特征。同样地,对交叉表数据实施对应分析(双尺度祛)后再进行聚类分析,最后做模型分类。
看了数据挖掘和统计分析的区别和介绍后,也就体会到了数据挖掘的目的所在,不过千万不要气馁或丧失自信哦,因为在前面我们就已经提到,进行数据挖掘不需要具备高深的专业知识,也提到了多变量分析是数据挖掘的重要方法。那么,“从来没听说过多变量分析”的人该怎么办呢?使用Excel就能解决。只要能够灵活使用Excel,即使没有高深的统计学知识也能挖掘数据。cda网站的目的是在通过介绍用Excel挖掘数据的方法,向网友传达数据挖掘的乐趣,而不是枯燥无味的数学概念,这也是我们能够得到众多网友支持的重要原因所在,我们也会继续努力,为大家带来更多更好更简单和有趣有价值的内容。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据分析、后端开发、业务运维等工作中,SQL语句是操作数据库的核心工具。面对复杂的表结构、多表关联逻辑及灵活的查询需求, ...
2026-01-26支持向量机(SVM)作为机器学习中经典的分类算法,凭借其在小样本、高维数据场景下的优异泛化能力,被广泛应用于图像识别、文本 ...
2026-01-26在数字化浪潮下,数据分析已成为企业决策的核心支撑,而CDA数据分析师作为标准化、专业化的数据人才代表,正逐步成为连接数据资 ...
2026-01-26数据分析的核心价值在于用数据驱动决策,而指标作为数据的“载体”,其选取的合理性直接决定分析结果的有效性。选对指标能精准定 ...
2026-01-23在MySQL查询编写中,我们习惯按“SELECT → FROM → WHERE → ORDER BY”的语法顺序组织语句,直觉上认为代码顺序即执行顺序。但 ...
2026-01-23数字化转型已从企业“可选项”升级为“必答题”,其核心本质是通过数据驱动业务重构、流程优化与模式创新,实现从传统运营向智能 ...
2026-01-23CDA持证人已遍布在世界范围各行各业,包括世界500强企业、顶尖科技独角兽、大型金融机构、国企事业单位、国家行政机关等等,“CDA数据分析师”人才队伍遵守着CDA职业道德准则,发挥着专业技能,已成为支撑科技发展的核心力量。 ...
2026-01-22在数字化时代,企业积累的海量数据如同散落的珍珠,而数据模型就是串联这些珍珠的线——它并非简单的数据集合,而是对现实业务场 ...
2026-01-22在数字化运营场景中,用户每一次点击、浏览、交互都构成了行为轨迹,这些轨迹交织成海量的用户行为路径。但并非所有路径都具备业 ...
2026-01-22在数字化时代,企业数据资产的价值持续攀升,数据安全已从“合规底线”升级为“生存红线”。企业数据安全管理方法论以“战略引领 ...
2026-01-22在SQL数据分析与业务查询中,日期数据是高频处理对象——订单创建时间、用户注册日期、数据统计周期等场景,都需对日期进行格式 ...
2026-01-21在实际业务数据分析中,单一数据表往往无法满足需求——用户信息存储在用户表、消费记录在订单表、商品详情在商品表,想要挖掘“ ...
2026-01-21在数字化转型浪潮中,企业数据已从“辅助资源”升级为“核心资产”,而高效的数据管理则是释放数据价值的前提。企业数据管理方法 ...
2026-01-21在数字化商业环境中,数据已成为企业优化运营、抢占市场、规避风险的核心资产。但商业数据分析绝非“堆砌数据、生成报表”的简单 ...
2026-01-20定量报告的核心价值是传递数据洞察,但密密麻麻的表格、复杂的计算公式、晦涩的数值罗列,往往让读者望而却步,导致核心信息被淹 ...
2026-01-20在CDA(Certified Data Analyst)数据分析师的工作场景中,“精准分类与回归预测”是高频核心需求——比如预测用户是否流失、判 ...
2026-01-20在建筑工程造价工作中,清单汇总分类是核心环节之一,尤其是针对楼梯、楼梯间这类包含多个分项工程(如混凝土浇筑、钢筋制作、扶 ...
2026-01-19数据清洗是数据分析的“前置必修课”,其核心目标是剔除无效信息、修正错误数据,让原始数据具备准确性、一致性与可用性。在实际 ...
2026-01-19在CDA(Certified Data Analyst)数据分析师的日常工作中,常面临“无标签高维数据难以归类、群体规律模糊”的痛点——比如海量 ...
2026-01-19在数据仓库与数据分析体系中,维度表与事实表是构建结构化数据模型的核心组件,二者如同“骨架”与“血肉”,协同支撑起各类业务 ...
2026-01-16