
9个最佳的大数据处理编程语言
大数据的浪潮仍在继续。它渗透到了几乎所有的行业,信息像洪水一样地席卷企业,使得软件越发庞然大物,比如Excel看上去就变得越来越笨拙。数据处理不再无足轻重,并且对精密分析和强大又实时处理的需要变得前所未有的巨大。
那么,在巨大的数据集中进行筛选的最好工具是什么?通过和数据骇客的交流,我们知道了他们用于硬核数据分析最喜欢的语言和工具包。
![]()
1
|
在这些语言名单中,如果R语言排第二,那就没其他能排第一。自1997年以来,作为昂贵的统计软件,如Matlab和SAS的免费替代品,它渐渐风靡全球。
在过去的几年时间中,R语言已经成为了数据科学的宠儿——数据科学现在不仅仅在书呆子一样的统计学家中人尽皆知,而且也为华尔街交易员,生物学家,和硅谷开发者所家喻户晓。各种行业的公司,例如Google,Facebook,美国银行,以及纽约时报都使用R语言,R语言正在商业用途上持续蔓延和扩散。
R语言有着简单而明显的吸引力。使用R语言,只需要短短的几行代码,你就可以在复杂的数据集中筛选,通过先进的建模函数处理数据,以及创建平整的图形来代表数字。它被比喻为是Excel的一个极度活跃版本。
R语言最伟大的资本是已围绕它开发的充满活力的生态系统:R语言社区总是在不断地添加新的软件包和功能到它已经相当丰富的功能集中。据估计,超过200万的人使用R语言,并且最近的一次投票表明,R语言是迄今为止在科学数据中最流行的语言,被61%的受访者使用(其次是Python,39%)。
此外,它的身影也渐渐出现在了华尔街。以前,银行分析师会全神贯注于Excel文件直到深夜,但现在R语言被越来越多地用于金融建模R,特别是作为一种可视化工具,Niall O"Connor,美国银行的副总裁如是说。 “R语言使我们平凡的表格与众不同,”他说。
R语言的日渐成熟,使得它成为了数据建模的首选语言,虽然当企业需要生产大型产品时它的能力会变得有限,也有的人说这是因为它的地位正在被其他语言篡夺。
“R更适合于做一个草图和大概,而不是详细的构建,”Michael Driscoll,Metamarkets的首席执行官说。 “你不会在谷歌的网页排名以及Facebook的朋友推荐算法的核心找到R语言。工程师会用R语言做原型,然后移交给用Java或Python写的模型。”
话说回来,早在2010年,Paul Butler就以R语言打造了全球的Facebook地图而著名,这证明了该语言丰富的可视化功能。尽管他现在已经不像以前那样频繁地使用R语言了。
“R正在一点点地过时,因为它的缓慢和处理大型数据集的笨重,”Butler说。
那么,他使用什么代替呢?请继续阅往下看。
Rython
如果说R语言是一个神经质又可爱的高手,那么Python是它随和又灵活的表兄弟。作为一种结合了R语言快速对复杂数据进行挖掘的能力并构建产品的更实用语言,Python迅速得到了主流的吸引力。Python是直观的,并且比R语言更易于学习,以及它的生态系统近年来急剧增长,使得它更能够用于先前为R语言保留的统计分析。
“这是这个行业的进步。在过去的两年时间中,从R语言到Python已经发生了非常明显的转变,”Butler说。
在数据处理中,在规模和复杂性之间往往会有一个权衡,于是Python成为了一种折中方案。IPython notebook和NumPy可以用作轻便工作的一种暂存器,而Python可以作为中等规模数据处理的强大工具。丰富的数据社区,也是Python的优势,因为可以提供了大量的工具包和功能。
美国银行使用Python在银行的基础架构中构建新的产品和接口,同时也用Python处理财务数据。“Python广泛而灵活,因此人们趋之若鹜,”O"Donnell说。
不过,它并非最高性能的语言,只能偶尔用于大规模的核心基础设施,Driscoll这样说道。
Julia
虽然当前的数据科学绝大多数是通过R语言,Python,Java,MatLab和SAS执行的。但依然有其他的语言存活于夹缝中,Julia就是值得一看的后起之秀。
业界普遍认为Julia过于晦涩难懂。但数据骇客在谈到它取代R和Python的潜力时会不由得眉飞色舞。Julia是一种高层次的,极度快速的表达性语言。它比R语言快,比Python更可扩展,且相当简单易学。
“它正在一步步成长。最终,使用Julia,你就能够办到任何用R和Python可以做到的事情,”Butler说。
但是至今为止,年轻人对Julia依然犹豫不前。Julia数据社区还处于早期阶段,要能够和R语言和Python竞争,它还需要添加更多的软件包和工具。
“它还很年轻,但它正在掀起浪潮并且非常有前途,”Driscoll说。
JAVA
Java,以及基于Java的框架,被发现俨然成为了硅谷最大的那些高科技公司的骨骼支架。 “如果你去看Twitter,LinkedIn和Facebook,那么你会发现,Java是它们所有数据工程基础设施的基础语言,”Driscoll说。
Java不能提供R和Python同样质量的可视化,并且它并非统计建模的最佳选择。但是,如果你移动到过去的原型制作并需要建立大型系统,那么Java往往是你的最佳选择。
Hadoop和Hive
一群基于Java的工具被开发出来以满足数据处理的巨大需求。Hadoop作为首选的基于Java的框架用于批处理数据已经点燃了大家的热情。Hadoop比其他一些处理工具慢,但它出奇的准确,因此被广泛用于后端分析。它和Hive——一个基于查询并且运行在顶部的框架可以很好地结对工作。
Scala
Scala是另一种基于Java的语言,并且和Java相同的是,它正日益成为大规模机器学习,或构建高层次算法的工具。它富有表现力,并且还能够构建健壮的系统。
“Java就像是建造时的钢铁,而Scala则像黏土,因为你之后可以将之放入窑内转变成钢铁,”Driscoll说。
Kafka和Storm
那么,当你需要快速实时的分析时又该怎么办呢?Kafka会成为你的好朋友。它大概5年前就已经出现了,但是直到最近才成为流处理的流行框架。
Kafka,诞生于LinkedIn内部,是一个超快速的查询消息系统。Kafka的缺点?好吧,它太快了。在实时操作时会导致自身出错,并且偶尔地会遗漏东西。
“有精度和速度之间有一个权衡,”Driscoll说, “因此,硅谷所有的大型高科技公司都会使用两条管道:Kafka或Storm用于实时处理,然后Hadoop用于批处理系统,此时虽然是缓慢的但超级准确。”
Storm是用Scala编写的另一个框架,它在硅谷中因为流处理而受到了大量的青睐。它被Twitter纳入其中,勿庸置疑的,这样一来,Twitter就能在快速事件处理中得到巨大的裨益。
鼓励奖:
MatLab
MatLab一直以来长盛不衰,尽管它要价不菲,但它仍然被广泛使用在一些非常特殊的领域:研究密集型机器学习,信号处理,图像识别,仅举几例。
Octave
Octave和MatLab非常相似,但它是免费的。不过,它在学术性信号处理圈子之外很少见到。
GO
GO是另一个正在掀起浪潮的后起之秀。它由Google开发,从C语言松散地派生,并在构建健壮基础设施上,正在赢得竞争对手,例如Java和Python的份额。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08在商业竞争日益激烈的当下,“用数据说话” 已从企业的 “加分项” 变为 “生存必需”。然而,零散的数据分析无法持续为业务赋能 ...
2025-09-08随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04CDA 数据分析师:驾驭数据范式,释放数据价值 在数字化转型浪潮席卷全球的当下,数据已成为企业核心生产要素。而 CDA(Certified ...
2025-09-04K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03CDA 数据分析师与数据分析:解锁数据价值的关键 在数字经济高速发展的今天,数据已成为企业核心资产与社会发展的重要驱动力。无 ...
2025-09-03解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02CDA 数据分析师:助力企业破解数据需求与数据分析需求难题 在数字化浪潮席卷全球的当下,数据已成为企业核心战略资产。无论是市 ...
2025-09-02Power BI 度量值实战:基于每月收入与税金占比计算累计税金分摊金额 在企业财务分析中,税金分摊是成本核算与利润统计的核心环节 ...
2025-09-01巧用 ALTER TABLE rent ADD INDEX:租房系统数据库性能优化实践 在租房管理系统中,rent表是核心业务表之一,通常存储租赁订单信 ...
2025-09-01CDA 数据分析师:企业数字化转型的核心引擎 —— 从能力落地到价值跃迁 当数字化转型从 “选择题” 变为企业生存的 “必答题”, ...
2025-09-01数据清洗工具全景指南:从入门到进阶的实操路径 在数据驱动决策的链条中,“数据清洗” 是决定后续分析与建模有效性的 “第一道 ...
2025-08-29机器学习中的参数优化:以预测结果为核心的闭环调优路径 在机器学习模型落地中,“参数” 是连接 “数据” 与 “预测结果” 的关 ...
2025-08-29