
数据来源于用户 也谈数据分析这点事
昨天看到了caoz写的《数据分析这点事》,非常值得深度,看完后很有感触,也在这里随便写写关于数据分析的个人看法。
首先,在数据分析中我也不敢妄称高手,不会很多分析算法,不会用啥统计工具,只会傻傻的去盯着看。但是我非常喜欢看各种数据,大学时整天看各种硬件评测;研究生阶段看了无数相机、镜头评测;后来是每周琢磨全世界各种游戏机、游戏的销量。工作中也特别喜欢建立各种统计系统,看各种数据,现在公司的所有统计代码都是我自己写的,一般工作每天也会花接近30%的时间研究数据,至少可以算是个不折不扣的数据分析爱好者了。
关于数据分析,caoz已经说的非常好了,我也只能补充一下自己的经验感受了。
1、不管做统计还是看别人的数据,第一步永远是数据获取的可靠性。假如是采样数据的话,一定要看看采样方式,看看可能会存在什么样的误差。如果是自己数据的话,也要看看数据获取本身是否科学,例如统计用户行为一般都用js回调,如果还用apache日志来做统计,结果想来也不会靠谱。
2、获取到数据之后,肯定是需要建立统计,这时候,需要想想,建立什么样的统计信息才能更好的分析产品及用户的特性。很多时候,往往单一特征已经很难去描述,需要综合很多地方来看。例如网页搜索中,往往要看首条CTR、前三条CTR,末次点击等多种因素,并通过很多种不同因素结合做出分析和判断。
3、对数据要抱有怀疑之心,尤其是数据本身与你要达到的结论之间有没有必然的因果关系。举个例子,网页搜索结果如果CTR高一定就是体验好吗?搜索广告的RPM高就一定理想吗?
4、生成同一个数据,往往可以有不同的统计方法,如果选择错误的话,结论往往会大相径庭。例如想分析网站对搜索引擎的依赖性,究竟应该用PV,用Session,还是用UV做统计呢?如果一个用户一天访问多次,某些是来自搜索引擎,某些是主动访问,该如何计算呢?这里面还是有很深的学问。
5、数据中往往会有很多噪声,怎么将这些噪声过滤也很重要。就像投票有投票机,有些spider会执行你的统计js,有些用户会误点,如果没有很好的过滤和处理,会使数据的可靠性大打折扣。
6、理解各种可能会使数据产生波动的原因,并通过不断的分析、验证和排除找到真正原因。例如当发生搜索流量下降,有可能有很多种原因,例如机房网络出故障、竞争对手用某些产品捣乱、上线的代码存在重大不稳定因素、运营商出故障或者拉闸限电等等,这中间每个都有不同的验证方式,需要从服务器日志、基调数据、分区域、用户行为等多个维度去进行跟踪和试验,找到真正可能的核心原因。
对数据进行预估和判断需要一种感觉,这种感觉不是天生的,而需要不断的锻炼和培养。这个过程可能很漫长,一般情况下,需要先看很多数据,培养自己对数据的基本认识,也要分析一些事件中(如周末、节假日、或者故障等)数据的变化。而在产品上线前,先自己锻炼一下预估,然后再通过实际值对自己的预判进行验证和评估。通过这种不断的学习和分析,逐渐培养出自己对数据的领悟。
数据来源于用户,这个很多时候更是需要对人性的研究和分析。就像摆在页面不同位置的广告,CTR一般能达到多少?同样位置,摆广告好还是摆用户产品好?要做某个新产品,CTR能到多少?做互联网的大多是高端用户,很多东西自己是不会用不会点的,但正是这样,需要对用户有非常强的代入感,去换位思考,去分析人性,才能事先避免很多过于乐观的预估,以及无谓的试错。
以上,是自己的一点经验之谈。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
破解游戏用户流失困局:从数据洞察到留存策略 在游戏行业竞争白热化的当下,用户流失率已成为衡量产品健康度的核心指标。一款游 ...
2025-08-11PyTorch 中 Shuffle 机制:数据打乱的艺术与实践 在深度学习模型训练过程中,数据的呈现顺序往往对模型性能有着微妙却关键的影响 ...
2025-08-11数据时代的黄金入场券:CDA 认证解锁职业新蓝海 一、万亿级市场需求下的数据分析人才缺口 在数字化转型浪潮中,数据已成为企业核 ...
2025-08-11DBeaver 实战:实现两个库表结构同步的高效路径 在数据库管理与开发工作中,保持不同环境(如开发库与生产库、主库与从库)的表 ...
2025-08-08t 检验与卡方检验:数据分析中的两大统计利器 在数据分析领域,统计检验是验证假设、挖掘数据规律的重要手段。其中,t 检验和卡 ...
2025-08-08CDA 数据分析师:解锁数据价值的专业力量 在当今这个数据爆炸的时代,数据已成为像石油一样珍贵的战略资源。而 CDA 数据分析师, ...
2025-08-08人工智能对CDA数据分析领域的影响 人工智能对 CDA(Certified Data Analyst,注册数据分析师)数据分析领域的影响是全方位、多层 ...
2025-08-07SPSS 语法使用详解 在当今数据驱动的时代,SPSS( Statistical Package for the Social Sciences)作为一款功能强大的统计分析软 ...
2025-08-07SASEM 决策树:理论与实践应用 在复杂的决策场景中,如何从海量数据中提取有效信息并制定科学决策,是各界关注的焦点。SASEM 决 ...
2025-08-07CDA含金量分析 在数字经济与人工智能深度融合的时代,数据驱动决策已成为企业核心竞争力的关键要素。CDA(Certified Data Analys ...
2025-08-07大数据时代对定性分析的影响 在大数据时代,海量、多样、高速且低价值密度的数据充斥着我们的生活与工作。而定性分析作为一 ...
2025-08-07K-S 曲线、回归与分类:数据分析中的重要工具 在数据分析与机器学习领域,K-S 曲线、回归和分类是三个核心概念与工具,它们各 ...
2025-08-07CDA 数据分析师考试全解析 在当今数字化时代,数据已成为企业发展的核心驱动力,数据分析师这一职业也愈发受到重视。CDA 数据分 ...
2025-08-07大数据时代的隐患:繁荣背后的隐忧 当我们在电商平台浏览商品时,系统总能 “精准” 推送心仪的物品;当我们刷短视频时,算法 ...
2025-08-07解析 F 边界检验:协整分析中的实用工具 在计量经济学的时间序列分析中,判断变量之间是否存在长期稳定的均衡关系(即协整关系) ...
2025-08-07CDA 数据分析师报考条件详解:迈向专业认证的指南 在数据分析行业蓬勃发展的当下,CDA 数据分析师认证成为众多从业者提升专业 ...
2025-08-07通过 COX 回归模型诊断异常值 一、COX 回归模型概述 COX 回归模型,又称比例风险回归模型,是一种用于生存分析的统计方法。它能 ...
2025-08-07评判两组数据与初始数据准确值的方法 在数据分析与研究中,我们常常会面临这样的情况:需要对通过不同方法、不同过程得到的两组 ...
2025-08-07CDA 数据分析师行业标准:构建数据人才的能力坐标系 在数据驱动决策成为企业核心竞争力的时代,CDA(数据分析师)行业标准作为 ...
2025-08-07反向传播神经网络:突破传统算法瓶颈的革命性力量 在人工智能发展的历史长河中,传统算法曾长期主导着数据处理与模式识别领域 ...
2025-08-07