
经验分享:如何提高机器学习数据采集的效率
在新的一年里,很多人都在思考如何利用机器学习(ML)算法来提高产品或服务的质量。
PredictionIO公司与许多公司合作,部署他们的第一个ML系统和大数据基础设施。PredictionIO总结了数据收集任务中的一些好的实践,并愿意与你分享这些经验。
如果你正在考虑采用ML,以正确的格式收集正确的数据,将会降低你的数据清理工作以及数据浪费。
要收集所有数据
收集所有数据是非常重要的。除非你真正训练一个预测模型,否则你将很难知道哪个属性哪些信息具有预测价值,并提供最好的结果。 如果一条信息没有收集到,我们就没有办法获取它,并永远地失去它了。存储成本的低廉,也使得你可以收集一切与你的应用程序、产品或服务相关的数据。
这里有两个例子:
在产品推荐中,收集用户标识符、物品(即产品)标识和行为数据包括评分是非常重要的。 其他相关属性,如类别、描述、价格等数据,对于推荐模型的提升也是有用的。隐含的行为,如意见,可能比显性评分更加有用。
在预测泰坦尼克号乘客的生存上,我们凭直觉知道,乘客的年龄、性别等属性和结果是有关联的。 其他属性如船上儿童的数目、车费和客舱可能是也可能不是有用的信息。在你开始建立预测模型之前,你很难知道哪些方面将会对预测最有价值。
存储日志是一种常见的解决方案;他们以后可以提取、转换和加载来训练你的机器学习模型。
每个事件的时间戳
每个事件的时间戳都是很重要的,尤其是对于用户的动作或行为数据来说。时间戳能够阻止我们在构建机器学习模型时出现先窥偏差(Look-ahead Bias)。
PredictionIO提供支持最佳实践的Event Server或“基于事件的风格”收集数据。这意味着一切被视为有时间戳的事件而收集,不管他是一个用户(例如“Sarah Connor”),一件物品(例如“终结者”),或者一个用户对物品的操作(“Sarah Connor查看终结者“)。
举个例子,创建用户Sarah Connor:
注意,entityId我们使用了通用唯一标识符(UUID),而eventTime我们使用ISO 8601的格式。
保持属性一致性
使用一致的属性值。如果性别使用了“Female”,最好往后保持使用相同的符号,而不是以“F”或“female”或“girl”来替代。 当你删除了一项特征,你应该将之从训练集之中排除。你可以清理与该特征相关联的数据并重新导入。 当您添加一个新的特征,回填字段的默认值是重要的。
避免序列化和二进制
在Event Server 中,“属性”区域允许任何形式自由的JSON对象。为了方便,我们可以存储一个转义JSON字符串作为该区域之一。 然而,序列化可能会混淆数据,使之变成一个不可用的点。举例如下:
错误的代码:
正确的代码 :
可能的例外是当序列化大幅降低存储空间时。例如,你可能希望使用Protocol Buffer来存储数据,并把它们作为二进制字符串序列化。 这样做可以节省5倍的存储空间,但它会使你的数据不可解析。更糟糕的是,如果你失去了你的消息定义文件,数据将会永久丢失。 除非你的数据大小有谷歌或亚马逊那样的规模,不然这可能不值得。
查询时间
大型数据集的查询是耗时的工作。PredictionIO Event Server 通过(entityId,entityType)索引数据。 如果你想有效地查询,根据你的需要选择“entityId”和“entityType”。
使用队列服务
建议使用消息队列机制将事件数据传递到Event Store。如果Event Store暂时不可用,消息将驻留在队列中,直到它被处理。 数据不会丢失。
我们希望这篇文章对你有用。如果你有其他的技巧或者其他的问题,请在评论中与我们分享!
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
用 Power BI 制作地图热力图:基于经纬度数据的实践指南 在数据可视化领域,地图热力图凭借直观呈现地理数据分布密度的优势,成 ...
2025-07-24解析 insert into select 是否会锁表:原理、场景与应对策略 在数据库操作中,insert into select 是一种常用的批量数据插入语句 ...
2025-07-24CDA 数据分析师的工作范围解析 在数字化时代的浪潮下,数据已成为企业发展的核心资产之一。CDA(Certified Data Analyst)数据分 ...
2025-07-24从 CDA LEVEL II 考试题型看 Python 数据分析要点 在数据科学领域蓬勃发展的当下,CDA(Certified Data Analyst)认证成为众多从 ...
2025-07-23用 Python 开启数据分析之旅:从基础到实践的完整指南 在数据驱动决策的时代,数据分析已成为各行业不可或缺的核心能力。而 Pyt ...
2025-07-23鸢尾花判别分析:机器学习中的经典实践案例 在机器学习的世界里,有一个经典的数据集如同引路明灯,为无数初学者打开了模式识别 ...
2025-07-23解析 response.text 与 response.content 的核心区别 在网络数据请求与处理的场景中,开发者经常需要从服务器返回的响应中提取数 ...
2025-07-22解析神经网络中 Softmax 函数的核心作用 在神经网络的发展历程中,激活函数扮演着至关重要的角色,它们为网络赋予了非线性能力, ...
2025-07-22CDA数据分析师证书考取全攻略 一、了解 CDA 数据分析师认证 CDA 数据分析师认证是一套科学化、专业化、国际化的人才考核标准, ...
2025-07-22左偏态分布转正态分布:方法、原理与实践 左偏态分布转正态分布:方法、原理与实践 在统计分析、数据建模和科学研究中,正态分 ...
2025-07-22你是不是也经常刷到别人涨粉百万、带货千万,心里痒痒的,想着“我也试试”,结果三个月过去,粉丝不到1000,播放量惨不忍睹? ...
2025-07-21我是陈辉,一个创业十多年的企业主,前半段人生和“文字”紧紧绑在一起。从广告公司文案到品牌策划,再到自己开策划机构,我靠 ...
2025-07-21CDA 数据分析师的职业生涯规划:从入门到卓越的成长之路 在数字经济蓬勃发展的当下,数据已成为企业核心竞争力的重要来源,而 CD ...
2025-07-21MySQL执行计划中rows的计算逻辑:从原理到实践 MySQL 执行计划中 rows 的计算逻辑:从原理到实践 在 MySQL 数据库的查询优化中 ...
2025-07-21在AI渗透率超85%的2025年,企业生存之战就是数据之战,CDA认证已成为决定企业存续的生死线!据麦肯锡全球研究院数据显示,AI驱 ...
2025-07-2035岁焦虑像一把高悬的利刃,裁员潮、晋升无望、技能过时……当职场中年危机与数字化浪潮正面交锋,你是否发现: 简历投了10 ...
2025-07-20CDA 数据分析师报考条件详解与准备指南 在数据驱动决策的时代浪潮下,CDA 数据分析师认证愈发受到瞩目,成为众多有志投身数 ...
2025-07-18刚入职场或是在职场正面临岗位替代、技能更新、人机协作等焦虑的打工人,想要找到一条破解职场焦虑和升职瓶颈的系统化学习提升 ...
2025-07-182025被称为“AI元年”,而AI,与数据密不可分。网易公司创始人丁磊在《AI思维:从数据中创造价值的炼金术 ...
2025-07-18CDA 数据分析师:数据时代的价值挖掘者 在大数据席卷全球的今天,数据已成为企业核心竞争力的重要组成部分。从海量数据中提取有 ...
2025-07-18