文科生决心做数据分析师是不是疯了? 背景: 传媒类专业毕业,一直做视频剪辑、编辑方面的工作。没什么编码基础,只在大学时期考过VB。偶然得到一份数据分析师的工作,便决心从零做起。 疑惑: 工作近一年 ...
2016-05-27Excel中快速输入有固定内容的数据 很多情况下我们在Excel单元格中输入的数据是含有固定内容的,比如来自同一区县的身份证号码的前六位数字一定是相同的,或者来自同一县市的人的联系地址中省市县部分也是固定的 ...
2016-05-26大数据入门,你需要懂这四个常识 一、大数据分析的五个基本方面 1、可视化分析 大数据分析的使用者有大数据分析专家,同时还有普通用户,但是他们二者对于大数据分析最基本的要求就是可视化分析,因为可 ...
2016-05-26干货|游戏运营的数据分析方法 数据分析工作可以从宏观数据和微观数据(细分数据)说起,宏观数据是对总体趋势的预测,以及对异常数据的敏感性把握。而微观数据分析的来源一方面就是从宏观数据的异动而产生的需求 ...
2016-05-26企业数据分析的架构和方法 企业在正常运营中会产生数据,而对这些数据的深层次挖掘所产生的数据分析报告,对企业的运营及策略调整至关重要。对企业数据做好分析,对于促进企业的发展、为企业领导者提供决策依据 ...
2016-05-26数据分析师的利器:R语言 近年来,随着大数据浪潮的到来,数据科学快速发展,数据分析师要处理的数据问题越来越复杂,传统的数据分析工具越来越显得力不从心。 R语言作为国外数据分析师常用工具在国外的数据 ...
2016-05-26数据挖掘与数据分析的区别 总结一下主要有以下几点: 1、计算机编程能力的要求 作为数据分析很多情况下需要用到成型的分析工具,比如EXCEL、SPSS,或者SAS、R。一个完全不懂编程,不会敲代码的人完全可 ...
2016-05-26数据挖掘系列篇之DM解决几类问题 宋代禅宗大师青原行思提出参禅的三重境界:“参禅之初,看山是山,看水是水;禅有悟时,看山不是山,看水不是水;禅中彻悟,看山仍然山,看水仍然是水。” 数据挖掘也是这样 ...
2016-05-25什么是社会媒体挖掘? 把玩社会媒体数据就称为社会媒体挖掘,比方以某种方式展现社会媒体数据,比方分析社会媒体数据的内里含义,又比方从数据中深挖总结抽象模式以指导其他应用。 社会媒体 基于Web 2.0 ...
2016-05-25数据挖掘系列篇:聚类算法概述 本篇重点介绍聚类算法的原理,应用流程、使用技巧、评估方法、应用案例等。具体的算法细节可以多查阅相关的资料。聚类的主要用途就是客户分群。1.聚类 VS 分类 分类是“监督学 ...
2016-05-25数据挖掘在实际领域中的那些事儿 今天非常荣幸能给大家分享在大数据挖掘方面做的一些事情。 企业中的数据挖掘 我们先来看看在企业中数据挖掘都是怎么做的,以及有着哪些问题。 图中的左边是SPSS在 ...
2016-05-25时间序列预测网站流量增长趋势(ARIMA) 在文章《浅析网站流量趋势预测》中,我们曾对网站的直接流量进行过分析和预测,直接流量整体较为平稳,但在工作日和周末存在较大差异。因此我们之前的方法是将工作日和周 ...
2016-05-25决策树算法真的越复杂越好吗? 凡是在统计分析或机器学习领域从业的朋友们,对决策树这个名词肯定都不陌生吧。 决策树是一种解决分类问题的绝好方法,顾名思义,它正像一棵大树一样,由根部不断生长出很多 ...
2016-05-25关于大数据分析方法的几点思考 本文是我关于大数据分析方法的几点思考。当初的目的是系统化地看待数据分析。为了这点东西,我花了一个礼拜的时间,思考的结果却是碎片化的。看来,想清楚并不容易。由于时间关系 ...
2016-05-24数据分析师不可不知的10大基础实用算法及其讲解 算法一:快速排序算法 快速排序是由东尼·霍尔所发展的一种排序算法。在平均状况下,排序n个项目要Ο(nlogn)次比较。在最坏状况下则需要Ο(n2)次比较,但这种 ...
2016-05-24数据分析师的自我修养 大数据时代到来,如何从数据中提取、挖掘对业务发展有价值的、潜在的知识,为决策层的提供有力依据,为产品或服务发展方向起到积极作用,有力推动企业管理的精益化,对于每个企业都意义重 ...
2016-05-24数据分析师知识结构七大拿 作为数据分析师,无论最初的职业定位方向是技术还是业务,最终发到一定阶段后都会承担数据管理的角色。因此,一个具有较高层次的数据分析师需要具备完整的知识结构。 1. 数据 ...
2016-05-24数据分析师就业方向指南 给投身于此行当的你 现在确实是属于数据分析师的天下了,如果你有能力,有经验,充满好奇心以及永不倦怠的热情,作为数据分析师的你可谓前景广阔,有一大批公司乖乖站在你家门前挂着牌 ...
2016-05-24数据分析师在物联网的哪个环节? 物联网(Internet of Things)用最简单的一句话就是各种感知器的广泛应用,具体来说,要实现“物-物互联”,主要分三个层次: (1)感知层:由各种传感器以及传感器网关构成, ...
2016-05-24昨天在一个QQ交流群里看到有一个新手发问,如何去简单的分析网站日志,清楚知道网站的一个数据抓取情况,哪些目录抓取较好,有哪些IP段蜘蛛抓取等。 一个网站要发展的更快,走的更远,它离不开日常的一个数据分析, ...
2016-05-23在神经网络模型设计中,“隐藏层层数” 是决定模型能力与效率的核心参数之一 —— 层数过少,模型可能 “欠拟合”(无法捕捉数据 ...
2025-10-14在数字化浪潮中,数据分析师已成为企业 “从数据中挖掘价值” 的核心角色 —— 他们既要能从海量数据中提取有效信息,又要能将分 ...
2025-10-14在企业数据驱动的实践中,“指标混乱” 是最常见的痛点:运营部门说 “复购率 15%”,产品部门说 “复购率 8%”,实则是两者对 ...
2025-10-14在手游行业,“次日留存率” 是衡量一款游戏生死的 “第一道关卡”—— 它不仅反映了玩家对游戏的初始接受度,更直接决定了后续 ...
2025-10-13分库分表,为何而生? 在信息技术发展的早期阶段,数据量相对较小,业务逻辑也较为简单,单库单表的数据库架构就能够满足大多数 ...
2025-10-13在企业数字化转型过程中,“数据孤岛” 是普遍面临的痛点:用户数据散落在 APP 日志、注册系统、客服记录中,订单数据分散在交易 ...
2025-10-13在数字化时代,用户的每一次行为 —— 从电商平台的 “浏览→加购→购买”,到视频 APP 的 “打开→搜索→观看→收藏”,再到银 ...
2025-10-11在机器学习建模流程中,“特征重要性分析” 是连接 “数据” 与 “业务” 的关键桥梁 —— 它不仅能帮我们筛选冗余特征、提升模 ...
2025-10-11在企业的数据体系中,未经分类的数据如同 “杂乱无章的仓库”—— 用户行为日志、订单记录、商品信息混杂存储,CDA(Certified D ...
2025-10-11在 SQL Server 数据库操作中,“数据类型转换” 是高频需求 —— 无论是将字符串格式的日期转为datetime用于筛选,还是将数值转 ...
2025-10-10在科研攻关、工业优化、产品开发中,正交试验(Orthogonal Experiment)因 “用少量试验覆盖多因素多水平组合” 的高效性,成为 ...
2025-10-10在企业数据量从 “GB 级” 迈向 “PB 级” 的过程中,“数据混乱” 的痛点逐渐从 “隐性问题” 变为 “显性瓶颈”:各部门数据口 ...
2025-10-10在深度学习中,“模型如何从错误中学习” 是最关键的问题 —— 而损失函数与反向传播正是回答这一问题的核心技术:损失函数负责 ...
2025-10-09本文将从 “检验本质” 切入,拆解两种方法的核心适用条件、场景边界与实战选择逻辑,结合医学、工业、教育领域的案例,让你明确 ...
2025-10-09在 CDA 数据分析师的日常工作中,常会遇到这样的困惑:某电商平台 11 月 GMV 同比增长 20%,但究竟是 “长期趋势自然增长”,还 ...
2025-10-09Pandas 选取特定值所在行:6 类核心方法与实战指南 在使用 pandas 处理结构化数据时,“选取特定值所在的行” 是最高频的操作之 ...
2025-09-30球面卷积神经网络(SCNN) 为解决这一痛点,球面卷积神经网络(Spherical Convolutional Neural Network, SCNN) 应运而生。它通 ...
2025-09-30在企业日常运营中,“未来会怎样” 是决策者最关心的问题 —— 电商平台想知道 “下月销量能否达标”,金融机构想预判 “下周股 ...
2025-09-30Excel 能做聚类分析吗?基础方法、进阶技巧与场景边界 在数据分析领域,聚类分析是 “无监督学习” 的核心技术 —— 无需预设分 ...
2025-09-29XGBoost 决策树:原理、优化与工业级实战指南 在机器学习领域,决策树因 “可解释性强、处理非线性关系能力突出” 成为基础模型 ...
2025-09-29