
数据分析师的利器:R语言
近年来,随着大数据浪潮的到来,数据科学快速发展,数据分析师要处理的数据问题越来越复杂,传统的数据分析工具越来越显得力不从心。
R语言作为国外数据分析师常用工具在国外的数据分析师业务中有广泛的应用领域,同时几乎也是国外高校统计专业的必修课,在学术届更是有着独一无二的共识性和应用领域。R语言的处理数据和数据可视化的强大能力,吸引了越来越多的数据分析师投入到R语言的阵营。
横向对比各种数据分析工具,结合数据分析师需要面对的日益复杂的应用场景,数据分析师要提升专业能力和处理数据的能力,选择称手的工具,R语言是一个非常好的选择。
一、R语言是数据分析领域的通用语言
R语言是统计学家发明的工具,早期主要是学术界的统计学家在用,他们将其用在各种不同的领域,包括统计分析,生物信息学,应用数学,计量经济,金融分析,财经分析,人文科学,数据挖掘,人工智能,生物制药,全球地理科学,数据可视化等等。
近年来,随着大数据时代的带来,其他领域的数据分析人员,如互联网数据分析师,IT工程人员,广告数据分析人员等开始认识到R语言的强大能力,越来越多的其他领域的专业人员加入到R语言的使用者队伍。
根据kdnuggets的调查显示,在2012.2013.2014连续三年,R语言都是数据分析、数据挖掘、数据科学领域排名第一的主流语言和工具。
Revolution Analytics的社区总监和新开源解决方案组的领头人支出:“R语言几乎成为了数据科学领域的通用语言。”
网络上更是流传数据分析师鄙视链的戏谑说法:“R>SAS>stata>SPSS>EXCEL,从另外一个方面说明了掌握的工具与所处的行业地位之间的关系,掌握了R语言的数据分析师往往具有更强的数据分析能力和更好的行业地位。
二、R语言是一门编程语言。
(1)R语言是一门编程语言
维基百科中对R语言的定义:一种自有软件编程语言与操作环境,主要用于统计分析、绘图、数据挖掘。
既然R语言是一直编程语言,我们对比其它编程语言,将R语言作为一种编程语言的特性进行对比分析如下:
在这个表格中,我们能看出,R语言作为一种面向对象的高级编程语言,与Java、C++、C、Fortran这些编程语言相比,具有解释型、交互型和动态类型的特点。而后面这3个特点,特别适合数据分析师进行数据分析的业务场景,变量无需事先定义,直接拿来就用,每一步分析都能与系统交互,看到处理的结果,能快速排除错误和逐步深入数据分析业务本身,将重点放在分析解决问题上,数据分析师从繁杂的编程中抽离出来。面向问题而不是强调编程的特点,大大便利了数据分析师的分析业务。
此外,R语言以向量为基本运算对象,这不仅能有效降低代码的冗余度,也显著提升了代码的运算效率。简单的几行代码,不仅能实现其他语言一大段代码的功能,而且运算速度也很快。
(2)R语言不仅仅是一门编程语言,R语言更是一门专业的统计计算语言。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04CDA 数据分析师:驾驭数据范式,释放数据价值 在数字化转型浪潮席卷全球的当下,数据已成为企业核心生产要素。而 CDA(Certified ...
2025-09-04K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03CDA 数据分析师与数据分析:解锁数据价值的关键 在数字经济高速发展的今天,数据已成为企业核心资产与社会发展的重要驱动力。无 ...
2025-09-03解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02CDA 数据分析师:助力企业破解数据需求与数据分析需求难题 在数字化浪潮席卷全球的当下,数据已成为企业核心战略资产。无论是市 ...
2025-09-02Power BI 度量值实战:基于每月收入与税金占比计算累计税金分摊金额 在企业财务分析中,税金分摊是成本核算与利润统计的核心环节 ...
2025-09-01巧用 ALTER TABLE rent ADD INDEX:租房系统数据库性能优化实践 在租房管理系统中,rent表是核心业务表之一,通常存储租赁订单信 ...
2025-09-01CDA 数据分析师:企业数字化转型的核心引擎 —— 从能力落地到价值跃迁 当数字化转型从 “选择题” 变为企业生存的 “必答题”, ...
2025-09-01数据清洗工具全景指南:从入门到进阶的实操路径 在数据驱动决策的链条中,“数据清洗” 是决定后续分析与建模有效性的 “第一道 ...
2025-08-29机器学习中的参数优化:以预测结果为核心的闭环调优路径 在机器学习模型落地中,“参数” 是连接 “数据” 与 “预测结果” 的关 ...
2025-08-29CDA 数据分析与量化策略分析流程:协同落地数据驱动价值 在数据驱动决策的实践中,“流程” 是确保价值落地的核心骨架 ——CDA ...
2025-08-29CDA含金量分析 在数字经济与人工智能深度融合的时代,数据驱动决策已成为企业核心竞争力的关键要素。CDA(Certified Data Analys ...
2025-08-28CDA认证:数据时代的职业通行证 当海通证券的交易大厅里闪烁的屏幕实时跳动着市场数据,当苏州银行的数字金融部连夜部署新的风控 ...
2025-08-28