数据是一种珍贵资产。尤其是在当今快消品当道的背景下,你需要数据来帮助你准确定位、深度投入和优化前景。如果你不能合理的管理这些数据,就可能会错失良机、降低效率,甚至对你的盈亏造成负面影响。 市场数据尤为 ...
2016-05-23一位资深数据分析师的分享:掌握基础及更新知识 一、掌握基础、更新知识。 基本技术怎么强调都不过分。这里的术更多是(计算机、统计知识),多年做数据分析、数据挖掘的经历来看、以及业界朋友的交流来看,这 ...
2016-05-23笑喷了!20条关于数学及数据分析的冷笑话 1、“我是搞数据分析的,学会了如何从DW中用SQL对数据ETL并建立了Cube。然后算啊算啊算,得出结论:今年2月份营业收入远远小于其它月份。我试图用spss、sas中的数据挖掘 ...
2016-05-23数据分析师最常遭遇的10个问题,你准备好了吗? 1、如何做好数据分析? 分析师成长是通过“干”、\"思\"、“熬”出来的。干:多做。哪些是临时需求。你要做各种各样的分析;思:你在边干的过程中,要边思考,边 ...
2016-05-23数据分析师?架构师?大数据时代的热门职业! 大数据已是当下信息时代一个非常热的概念,大数据时代到来,将给人才发展带来哪些机会?谁将是未来最热门的人才?大数据时代的热门职业都有哪些?让我们一起来看看 ...
2016-05-23数据分析师应该进什么样的公司? 数据分析师这个职业现在越来越火爆。本文面向那些准备投身于这个行当的年轻人,在选择怎样的公司上给出了三条参考标准。它们分别是:第一点:去供职于那些利用数据分析来做市场 ...
2016-05-23数据分析师的几点体验 如果你做了5年左右的数据分析师,相信你对这篇文章应该很有感触。如果你是新人,不妨作为入门时间的指引方向。 1.数据是有立场的,立场决定解读 数据对于业务来讲,是KPI的衡量 ...
2016-05-23利用数据分析进行人力资源管理的优化 大家经常说:无工具不管理、无数据难决策。所以企业的人力资源管理,我们首先要考虑在目前大数据背景下如何开展人力资源数据的整理与分析。 当前,移动互联网、社交应用 ...
2016-05-22从数据分析的角度说说老玩家流失的四大因素 能够通过游戏前期的大浪淘沙,坚持到游戏后期的玩家,无论是否付费,想必都是忠实玩家,忠实玩家是才是一款游戏最根本的变现可能,存在着无限巨大的价值,当你的忠实 ...
2016-05-22分析三种数据中心热逻辑策略 数据中心热逻辑策略是什么?他有几种实现的方式?本文就将是对三种数据中心热逻辑策略目标进行详细的分析与介绍。 数据中心热逻辑策略:在IT基础设施降低能源消耗 通过已知的 ...
2016-05-22数据的四个特征 最近的确有些忙,博客也荒芜了许久。很多博友问起我,怎么不见更新了?我心怀歉意。说实话,很久不写东东,我心里也感觉空空的。还是要继续写下去,承蒙大家关注,我没有理由懈怠。 今天我们 ...
2016-05-22如何真正学习数据科学? 学习数据科学的第一步通常都是问问自己:我要怎样学习数据科学?这个问题的回复是我们要上一系列的课程和阅读一些书籍,并且我们需要先从线性代数或统计学开始学习。一年前,在学习过程中 ...
2016-05-22分析四类数据仓库建模方法 数据库及数据仓库建模方法主要分为以下四类。 第一类是关系数据库的三范式建模 通常我们将三范式建模方法用于建立各种操作型数据库系统。 第二类是Inmon提倡的三范式数 ...
2016-05-22大数据时代如何收集、分析数据 在数据收集和分析这一正在繁荣发展的行业中,Factual创始人、此外还对其他30多家创业公司进行投资的吉拉德-艾尔贝兹(Gilad Elbaz)可能是最具影响力的投资者。 在7岁大时,艾 ...
2016-05-219个最适合实时数据分析的应用领域 可能很多朋友还没有接触过大数据分析方案,也有人认为其仅仅算是个愿景而非现实——毕竟能够证明其可行性与实际效果的案例确实相对有限。但可以肯定的是,实时数据流中包含着 ...
2016-05-21三个要点解构数据分析的思维模式 数据分析(Data Analysis)——这个词真的是如雷贯耳,装B一绝啊!甭管什么玩意,上来先整一通再说。“数据分析”甚是被提上了神坛,找工作或者聊点行业内的动态不提点数据简直 ...
2016-05-21数据分析应该要避免的六个错误 数据分析要产生真正的价值,或者说要让业务方,管理层感觉到真正的价值,其实需要非常多的东西: 1、要有数据,而且的确需要足够多的数据。是正常的数据积累。 2、分 ...
2016-05-21数据分析师做竞品分析的正确姿势 市面上介绍怎么做竞品分析的文章多是以产品经理的视角进行,那么以数据分析师的视角做竞品分析该如何呢?以市场经理的视角做竞品分析又该如何呢?不同的身份视角,对应的是分析 ...
2016-05-21数据分析师:告诉你大数据的四大价值所在 从事数据分析工作的人必须了解你使用的数据是怎么处理出来的,要了解数据库的结构和基本原理,同时如果条件充足的话,你还能有足够的能力从数据库里提取你需要的数据( ...
2016-05-20说说什么是数据分析方法论? 在数据集成类的项目中,最难的过程就是数据分析了,数据分析过程位于数据集成类项目整个过程(前期准备调研—–数据分析—–接口实现)的第二步,它为第三步接口实现提供了充分的准 ...
2016-05-20基于 SPSS 的 ROC 曲线平滑调整方法与实践指南 摘要 受试者工作特征曲线(ROC 曲线)是评估诊断模型或预测指标效能的核心工具, ...
2025-08-25神经网络隐藏层神经元个数的确定方法与实践 摘要 在神经网络模型设计中,隐藏层神经元个数的确定是影响模型性能、训练效率与泛 ...
2025-08-25CDA 数据分析师与数据思维:驱动企业管理升级的核心力量 在数字化浪潮席卷全球的当下,数据已成为企业继人力、物力、财力之后的 ...
2025-08-25CDA数据分析师与数据指标:基础概念与协同逻辑 一、CDA 数据分析师:数据驱动时代的核心角色 1.1 定义与行业价值 CDA(Certified ...
2025-08-22Power Query 移动加权平均计算 Power Query 移动加权平均设置全解析:从原理到实战 一、移动加权平均法的核心逻辑 移动加权平均 ...
2025-08-22描述性统计:CDA数据分析师的基础核心与实践应用 一、描述性统计的定位:CDA 认证的 “入门基石” 在 CDA(Certified Data Analy ...
2025-08-22基于 Python response.text 的科技新闻数据清洗去噪实践 在通过 Python requests 库的 response.text 获取 API 数据后,原始数据 ...
2025-08-21基于 Python response.text 的科技新闻综述 在 Python 网络爬虫与 API 调用场景中,response.text 是 requests 库发起请求后获取 ...
2025-08-21数据治理新浪潮:CDA 数据分析师的战略价值与驱动逻辑 一、数据治理的多维驱动引擎 在数字经济与人工智能深度融合的时代,数据治 ...
2025-08-21Power BI 热力地图制作指南:从数据准备到实战分析 在数据可视化领域,热力地图凭借 “直观呈现数据密度与分布趋势” 的核心优势 ...
2025-08-20PyTorch 矩阵运算加速库:从原理到实践的全面解析 在深度学习领域,矩阵运算堪称 “计算基石”。无论是卷积神经网络(CNN)中的 ...
2025-08-20数据建模:CDA 数据分析师的核心驱动力 在数字经济浪潮中,数据已成为企业决策的核心资产。CDA(Certified Data Analyst)数据分 ...
2025-08-20KS 曲线不光滑:模型评估的隐形陷阱,从原因到破局的全指南 在分类模型(如风控违约预测、电商用户流失预警、医疗疾病诊断)的评 ...
2025-08-20偏态分布:揭开数据背后的非对称真相,赋能精准决策 在数据分析的世界里,“正态分布” 常被视为 “理想模型”—— 数据围绕均值 ...
2025-08-19CDA 数据分析师:数字化时代的价值创造者与决策智囊 在数据洪流席卷全球的今天,“数据驱动” 已从企业战略口号落地为核心 ...
2025-08-19CDA 数据分析师:善用 Power BI 索引列,提升数据处理与分析效率 在 Power BI 数据分析流程中,“数据准备” 是决定后续分析质量 ...
2025-08-18CDA 数据分析师:巧用 SQL 多个聚合函数,解锁数据多维洞察 在企业数据分析场景中,单一维度的统计(如 “总销售额”“用户总数 ...
2025-08-18CDA 数据分析师:驾驭表格结构数据的核心角色与实践应用 在企业日常数据存储与分析场景中,表格结构数据(如 Excel 表格、数据库 ...
2025-08-18PowerBI 累计曲线制作指南:从 DAX 度量到可视化落地 在业务数据分析中,“累计趋势” 是衡量业务进展的核心视角 —— 无论是 “ ...
2025-08-15Python 函数 return 多个数据:用法、实例与实战技巧 在 Python 编程中,函数是代码复用与逻辑封装的核心载体。多数场景下,我们 ...
2025-08-15