
数据的四个特征
最近的确有些忙,博客也荒芜了许久。很多博友问起我,怎么不见更新了?我心怀歉意。说实话,很久不写东东,我心里也感觉空空的。还是要继续写下去,承蒙大家关注,我没有理由懈怠。
今天我们聊点什么呢?
聊聊数据吧。我们总是在谈数据分析,那么到底什么是数据,数据有什么特征呢?这个问题虽基础却重要。
这里我们所说的数据,仅指应用于企业运营的市场信息。它是认识事物的中间环节,是事物的表面特征,其作用在于消除事物的不确定性。它至少具有以下四个基本特征。
一、时效性
所谓时效性是指数据的发生和运用要有个提前期,失去时效性,就失去了潜在机会。
举个例子,以前在广州有个大厦,它对数据的时效性运用的就很好。据说有一年,它的经理和别人聊天,人家无意间提起说那年春天广州的雨水将特别大,于是他特意去了广州气象台证实,证实后,他开始调查,发现深圳一家厂子里积压着20万多把雨伞。当时正是11月份,旱季,这家厂子压着20万多把雨伞早就想出手,所以这个大厦的经理就去了深圳,以极低的价格就把雨伞盘进来了。结果那年广州的春天来得特别早,一过春节,这雨哗哗就下起来了,他趁机20多万把雨伞往出卖,结果一销而空。这就是利用了信息的时效性。
简单吗?很简单,只需要到气象台问一下,但是,有多少企业会问呢?其实并不多,因为很多企业就没有提前获取数据的意识。经常是等到下雨了再进雨伞,那就没买卖做了。
数据要具有时效性,或者说数据分析要有预见性,因此,大家在采集数据的时候,要注意数据的时效性,要具备用现在的数据预测未来市场的走向的意识。
二、分散性
数据的分散性,具体表现在两个方面。
1、没有固定发生地
数据没有固定发生地,因此,需要多渠道采集数据,除了上网、图书馆查资料、还要留意电视、杂志等媒体的信息,关注统计局、行业协会、研究机构的数据或者直接做市场调研。
2、零散分布,相互关联才完整
数据是零散的,真正能还原数据的完整性,并充分利用数据的,都是勤于思考,努力寻找数据关联性的人。
在旧社会的解放区,人人都听到,河北省出了一个白毛仙姑,但是谁也没有去琢磨,当时只有20岁的贺敬之琢磨出来了:这叫做旧社会把人变成鬼,新社会把鬼变成人。于是他就写出了不朽的名著叫做《白毛女》,正可谓“人人之所见、人人所未思”。
三、概率性
什么是概率性?简单理解就是看似结果不确定的事情,多次重复,就会显示出一定的规律性。
比如我们抛硬币。抛5次、10次,到底有几次正面向上不好说,但若抛几百次,几千次,正面向上的可能性就稳定在50%左右。
有一个生产装汽水、装啤酒的塑料箱的小厂厂长,了解了数据的概率性,就把北京邮政编码本找来,找到北京130个单位,发了130封信,结果就回来1封,让他拿着样品过去看看,概率够低的。这个厂长怕别人搞不好,就自己夹着箱子去了。这家单位在4楼,厂长把箱子递过去,那老兄看都没看,一推窗户,‘磅’的一声,就给扔出去了。然后那老兄就往下跑,这厂长就在后面追,到了楼下,一看这箱子,一点没坏!那老兄说:“行!这箱子挺结实的,定货!”半年的买卖就有了。玩的就是概率。
数据的概率性告诉我们:成功=努力+等待。
四、再创性
所谓再创性是指我们所看到的数据只是一种现象和启示,不同的人会得出不同的结论。而要想透过现象看本质,需要用发展的眼光看问题,通过深入的分析,找出隐藏在市场现象背后的机会。
例如,二战后,松下幸之助开始研制一个非常不起眼的家庭用电机,好多人嘲笑他,说电机都是工厂用的,你这电机家庭干什么使呢。但是,松下幸之助看到了家用电机的发展,他说:‘现在是零,将来就是无限。’用发展的眼光看问题,才能再创性地挖掘机会。
再讲个故事:有甲、乙两个推销员,同时到非洲的一个岛国卖鞋子。这个岛国里人人都光着脚丫。甲推销员一见到他们都不穿鞋,于是认为鞋子在这里没有销路;而乙推销员将数据进行再创,看到他们不穿鞋,于是拿着鞋子来做调查,经调查发现:这里的人之所以不穿鞋,是因为他们的脚都特别宽,而市面上的鞋太窄,他们穿不进去。于是他建议公司生产出专门适合这个岛国的鞋子。此外,他还把尺寸合适的鞋子送给当地的酋长,酋长一穿鞋,感觉舒服极了,而老百姓一看酋长都穿鞋了,他们也想穿。等到老百姓也想穿,就有市场了,原来都不穿鞋,现在人人都要穿鞋,于是乙推销员让鞋子很有销路。这个故事说明,数据只是现象和启发,只有深入的分析,才能再创性地挖掘机会。
以上就是数据的四个特征:时效性、分散性、概率性、再创性。
了解数据的四个特征,对于我们的数据工作具有启发。例如,数据采集就要充分考虑到数据的这四个特征:
基于再创性,要对采集到的数据信息深入地分析和解读
数据除了这四个特征外,还有没有其他的特征?很想听听你的想法:
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
PyTorch 核心机制:损失函数与反向传播如何驱动模型进化 在深度学习的世界里,模型从 “一无所知” 到 “精准预测” 的蜕变,离 ...
2025-07-252025 年 CDA 数据分析师考纲焕新,引领行业人才新标准 在数字化浪潮奔涌向前的当下,数据已成为驱动各行业发展的核心要素。作为 ...
2025-07-25从数据到决策:CDA 数据分析师如何重塑职场竞争力与行业价值 在数字经济席卷全球的今天,数据已从 “辅助工具” 升级为 “核心资 ...
2025-07-25用 Power BI 制作地图热力图:基于经纬度数据的实践指南 在数据可视化领域,地图热力图凭借直观呈现地理数据分布密度的优势,成 ...
2025-07-24解析 insert into select 是否会锁表:原理、场景与应对策略 在数据库操作中,insert into select 是一种常用的批量数据插入语句 ...
2025-07-24CDA 数据分析师的工作范围解析 在数字化时代的浪潮下,数据已成为企业发展的核心资产之一。CDA(Certified Data Analyst)数据分 ...
2025-07-24从 CDA LEVEL II 考试题型看 Python 数据分析要点 在数据科学领域蓬勃发展的当下,CDA(Certified Data Analyst)认证成为众多从 ...
2025-07-23用 Python 开启数据分析之旅:从基础到实践的完整指南 在数据驱动决策的时代,数据分析已成为各行业不可或缺的核心能力。而 Pyt ...
2025-07-23鸢尾花判别分析:机器学习中的经典实践案例 在机器学习的世界里,有一个经典的数据集如同引路明灯,为无数初学者打开了模式识别 ...
2025-07-23解析 response.text 与 response.content 的核心区别 在网络数据请求与处理的场景中,开发者经常需要从服务器返回的响应中提取数 ...
2025-07-22解析神经网络中 Softmax 函数的核心作用 在神经网络的发展历程中,激活函数扮演着至关重要的角色,它们为网络赋予了非线性能力, ...
2025-07-22CDA数据分析师证书考取全攻略 一、了解 CDA 数据分析师认证 CDA 数据分析师认证是一套科学化、专业化、国际化的人才考核标准, ...
2025-07-22左偏态分布转正态分布:方法、原理与实践 左偏态分布转正态分布:方法、原理与实践 在统计分析、数据建模和科学研究中,正态分 ...
2025-07-22你是不是也经常刷到别人涨粉百万、带货千万,心里痒痒的,想着“我也试试”,结果三个月过去,粉丝不到1000,播放量惨不忍睹? ...
2025-07-21我是陈辉,一个创业十多年的企业主,前半段人生和“文字”紧紧绑在一起。从广告公司文案到品牌策划,再到自己开策划机构,我靠 ...
2025-07-21CDA 数据分析师的职业生涯规划:从入门到卓越的成长之路 在数字经济蓬勃发展的当下,数据已成为企业核心竞争力的重要来源,而 CD ...
2025-07-21MySQL执行计划中rows的计算逻辑:从原理到实践 MySQL 执行计划中 rows 的计算逻辑:从原理到实践 在 MySQL 数据库的查询优化中 ...
2025-07-21在AI渗透率超85%的2025年,企业生存之战就是数据之战,CDA认证已成为决定企业存续的生死线!据麦肯锡全球研究院数据显示,AI驱 ...
2025-07-2035岁焦虑像一把高悬的利刃,裁员潮、晋升无望、技能过时……当职场中年危机与数字化浪潮正面交锋,你是否发现: 简历投了10 ...
2025-07-20CDA 数据分析师报考条件详解与准备指南 在数据驱动决策的时代浪潮下,CDA 数据分析师认证愈发受到瞩目,成为众多有志投身数 ...
2025-07-18