
文科生决心做数据分析师是不是疯了?
背景:
传媒类专业毕业,一直做视频剪辑、编辑方面的工作。没什么编码基础,只在大学时期考过VB。偶然得到一份数据分析师的工作,便决心从零做起。
疑惑:
工作近一年,一直在做数据整理方面工作,感觉没什么分析提炼的能力提升。自学了一点SQL查询语句,统计学与概率教程看不懂理论与具体工作有什么关系。想问我这种情况该从哪方面着手自我修炼呢?
回答:
完全有可能。
题主知不知道有个专业叫心理学,这是一个理科专业,但是是文理兼招的。心理学专业要学很多数据分析,很多文科生也学的很好。
首先破除一个误解,数据分析师最主要的能力不是计算机技术,而是数据统计分析能力。其实小公司里面的数据分析师能力要求并不高,周围的数据分析师很少有高级到懂机器学习的。大家说的懂Java什么的我觉得是数据挖掘工程师了。数据分析和数据挖掘需要掌握的技能有什么区别? – 纪路的回答须知数据分析师到数据挖掘工程师之间还差了100个程序员。下面贴出阿里的“数据分析师职位技能树分析,进阿里什么难度大家懂,所以应聘小公司“数据分析师岗位的话技能要求可适当放低。””校园招聘时一位应聘“数据分析师”职位的学生应该具备哪些技能? – 知乎用户的回答
如果你要入坑数据分析师,我建议你从四方面入门: (根据阿里数据分析师试卷)
1.统计学
2.SQL
3.spss
4.R语言
统计学绝对是数据分析师的核心竞争力,是你技能树的骨干,你要知道过去数据分析也是直接靠人工计算的。但是现在数据量级越来越大,靠手算已经不能解决问题了。所以我们需要一些工具来帮助我们处理数据。比如spss就是一个专门为数据分析开发出来的成品软件,已经非常成熟了。你可能听别人说数据分析师要会spss和SAS,其实呢,他们就相当于PPT和Keynote的关系。工具嘛,会一门就行。对于你这种还没入门的,spss比SAS简单,你可以就学spss不学SAS。那SQL是干什么的呢,它是数据库语言,也就是说数据太多了你要建个仓库把它们分门别类的放好,方便查找。R语言呢,是专门用来统计和制图的一门编程语言,也是数据分析的利器。但是呢,其实spss已经有很多功能了,所以R语言并非必要,只能说是个加分项。
所以只要你统计学的好,spss和SQL也会了,基本上就差不多了。
至于学习难度呢,统计学选外国的教程看起来思路就明晰很多。SQL选对了书一点也不难,spss比SAS简单好多,就是一个直接点的软件,R语言跟你想的不一样,它也跟一般的编程语言不同。不需要多少编程基础,非常适合作为文科生的你。
话不多说,直接推荐入门书籍:
1.统计学:国外的统计学书籍你自己找找,看书做练习题。
2.SQL:《head first SQL》强推,超级简单
3.spss……这个都可以,在网上找找课件
4.R语言:可以从code school上R的入门教程学起,书的话《实战R语言》《R for beginners》《R语言核心技术手册》 入门之后再多分析case,多运用。
还有这个答案,很值得参考如何快速成为数据分析师? – 卡牌大师的回答
但是入门之后,往深里学的话还是要弥补一下自己的数学方面的短板,高数、现代、离散数学(计算机数学)和数据结构(计算机数学)等。尤其离散数字。前期你也许感受不到这个的重要性。可是后期你会越来越感受到。比如你学R语言的xx包,那个包有个论文,然后你看论文发现里面讲了有向图,你就会想这个有向图是个什么鬼。然后你学了离散数学就知道了。数据分析师总之是一个数学和计算机交汇处的职业,所以计算机方面比如网页分析等等也需要涉及一些。这些也并没有你想象的难。我们科班出身的也就是一门学了一学期而已。
然后关于如何入门数据分析师和数据分析师的要求,推荐你翻一翻上关于数据分析师的答案。多看看,然后制定自己的学习计划。关于数据分析、挖掘和R语言的公众号和资源。还有一些博客、统计之都等等可以去看看。
最后,要对自己有信心,有一个idea就去实现它。这是完全可能的。多看书,多刷题,刷到一定数量开始尝试解决实际问题。我有个文科同学就做了一个学期习题期末统计得了我们班最高分 99。现在统计很厉害。
但是我觉得你更应该考虑的是你的职业规划,你学数据分析到底是准备现在就靠这个找工作呢还是把它当做未来的跳板?如果在小公司,数据分析师技能要求并不高,你也许学个几个月就可以去了。可是与之对应,工资也并不高。你不一定愿意。如果去大公司呢,技能要求高,那需要一定的时间。
总之,相信自己,文理科本来就是一个人为的划分而已,大家的脑结构并无显著差异。加油
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
用 SQL 验证业务逻辑:从规则拆解到数据把关的实战指南 在业务系统落地过程中,“业务逻辑” 是连接 “需求设计” 与 “用户体验 ...
2025-09-11塔吉特百货孕妇营销案例:数据驱动下的精准零售革命与启示 在零售行业 “流量红利见顶” 的当下,精准营销成为企业突围的核心方 ...
2025-09-11CDA 数据分析师与战略 / 业务数据分析:概念辨析与协同价值 在数据驱动决策的体系中,“战略数据分析”“业务数据分析” 是企业 ...
2025-09-11Excel 数据聚类分析:从操作实践到业务价值挖掘 在数据分析场景中,聚类分析作为 “无监督分组” 的核心工具,能从杂乱数据中挖 ...
2025-09-10统计模型的核心目的:从数据解读到决策支撑的价值导向 统计模型作为数据分析的核心工具,并非简单的 “公式堆砌”,而是围绕特定 ...
2025-09-10CDA 数据分析师:商业数据分析实践的落地者与价值创造者 商业数据分析的价值,最终要在 “实践” 中体现 —— 脱离业务场景的分 ...
2025-09-10机器学习解决实际问题的核心关键:从业务到落地的全流程解析 在人工智能技术落地的浪潮中,机器学习作为核心工具,已广泛应用于 ...
2025-09-09SPSS 编码状态区域中 Unicode 的功能与价值解析 在 SPSS(Statistical Product and Service Solutions,统计产品与服务解决方案 ...
2025-09-09CDA 数据分析师:驾驭商业数据分析流程的核心力量 在商业决策从 “经验驱动” 向 “数据驱动” 转型的过程中,商业数据分析总体 ...
2025-09-09R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08在商业竞争日益激烈的当下,“用数据说话” 已从企业的 “加分项” 变为 “生存必需”。然而,零散的数据分析无法持续为业务赋能 ...
2025-09-08随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04CDA 数据分析师:驾驭数据范式,释放数据价值 在数字化转型浪潮席卷全球的当下,数据已成为企业核心生产要素。而 CDA(Certified ...
2025-09-04K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03