
R语言处理缺失数据的高级方法
主要用到VIM和mice包
install.packages(c("VIM","mice"))
1.处理缺失值的步骤
步骤:
(1)识别缺失数据;
(2)检查导致数据缺失的原因;
(3)删除包含缺失值的实例或用合理的数值代替(插补)缺失值
缺失值数据的分类:
(1)完全随机缺失:若某变量的缺失数据与其他任何观测或未观测变量都不相关,则数据为完全随机缺失(MCAR)。
(2)随机缺失:若某变量上的缺失数据与其他观测变量相关,与它自己的未观测值不相关,则数据为随机缺失(MAR)。
(3)非随机缺失:若缺失数据不属于MCAR或MAR,则数据为非随机缺失(NIMAR)。
2.识别缺失值
NA:代表缺失值;
NaN:代表不可能的值;
Inf:代表正无穷;
-Inf:代表负无穷。
is.na():识别缺失值;
is.nan():识别不可能值;
is.infinite():无穷值。
is.na()、is.nan()和is.infinte()函数的返回值示例
xis.na(x)is.nan(x)is.infinite(x)
x<-NATRUEFALSEFALSE
x<-0/0TRUETRUEFALSE
x<-1/0FALSEFALSETRUE
complete.cases()可用来识别矩阵或数据框中没有缺失值的行,若每行都包含完整的实例,则返回TRUE的逻辑向量,若每行有一个或多个缺失值,则返回FALSE;
3.探索缺失值模式
(1)列表显示缺失值
mice包中的md.pattern()函数可以生成一个以矩阵或数据框形式展示缺失值模式的表格
library(mice)
data(sleep,package="VIM")
md.pattern(sleep)
(2)图形探究缺失数据
VIM包中提供大量能可视化数据集中缺失值模式的函数:aggr()、matrixplot()、scattMiss()
library("VIM")
aggr(sleep,prop=FALSE,numbers=TRUE)
library("VIM")
aggr(sleep,prop=TRUE,numbers=TRUE)#用比例代替了计数
matrixplot()函数可生成展示每个实例数据的图形
matrixplot(sleep)
浅色表示值小,深色表示值大;默认缺失值为红色。
marginplot()函数可生成一幅散点图,在图形边界展示两个变量的缺失值信息。
library("VIM")
marginplot(sleep[c("Gest","Dream")],pch=c(20),col=c("darkgray","red","blue"))
(3)用相关性探索缺失值
影子矩阵:指示变量替代数据集中的数据(1表示缺失,0表示存在),这样生成的矩阵有时称作影子矩阵。
求这些指示变量间和它们与初始(可观测)变量间的相关性,有且于观察哪些变量常一起缺失,以及分析变量“缺失”与其他变量间的关系。
head(sleep)
str(sleep)
x<-as.data.frame(abs(is.na(sleep)))
head(sleep,n=5)
head(x,n=5)
y<-x[which(sd(x)>0)]
cor(y)
cor(sleep,y,use="pairwise.complete.obs")
4.理解缺失值数据的来由和影响
识别缺失数据的数目、分布和模式有两个目的:
(1)分析生成缺失数据的潜在机制;
(2)评价缺失数据对回答实质性问题的影响。
即:
(1)缺失数据的比例有多大?
(2)缺失数据是否集中在少数几个变量上,抑或广泛存在?
(3)缺失是随机产生的吗?
(4)缺失数据间的相关性或与可观测数据间的相关性,是否可以表明产生缺失值的机制呢?
若缺失数据集中在几个相对不太重要的变量上,则可以删除这些变量,然后再进行正常的数据分析;
若有一小部分数据随机分布在整个数据集中(MCAR),则可以分析数据完整的实例,这样仍可得到可靠有效的结果;
若以假定数据是MCAR或MAR,则可以应用多重插补法来获得有铲的结论。
若数据是NMAR,则需要借助专门的方法,收集新数据,或加入一个相对更容易、更有收益的行业。
5.理性处理不完整数据
6.完整实例分析(行删除)
函数complete.cases()、na.omit()可用来存储没有缺失值的数据框或矩阵形式的实例(行):
newdata<-mydata[complete.cases(mydata),]
newdata<-na.omit(mydata)
options(digits=1)
cor(na.omit(sleep))
cor(sleep,use="complete.obs")
fit<-lm(Dream~Span+Gest,data=na.omit(sleep))
summary(fit)
7.多重插补
多重插补(MI)是一种基于重复模拟的处理缺失值的方法。
MI从一个包含缺失值的数据集中生成一组完整的数据集。每个模拟数据集中,缺失数据将使用蒙特卡洛方法来填补。
此时,标准的统计方法便可应用到每个模拟的数据集上,通过组合输出结果给出估计的结果,以及引入缺失值时的置信敬意。
可用到的包Amelia、mice和mi包
mice()函数首先从一个包含缺失数据的数据框开始,然后返回一个包含多个完整数据集的对象。每个完整数据集都是通过对原始数据框中的缺失数据进行插而生成的。
with()函数可依次对每个完整数据集应用统计模型
pool()函数将这些单独的分析结果整合为一组结果。
最终模型的标准误和p值都将准确地反映出由于缺失值和多重插补而产生的不确定性。
基于mice包的分析通常符合以下分析过程:
library(mice)
imp<-mice(mydata,m)
fit<-with(imp,analysis)
pooled<-pool(fit)
summary(pooled)
mydata是一个饮食缺失值的矩阵或数据框;imp是一个包含m个插补数据集的列表对象,同时还含有完成插补过程的信息,默认的m=5analysis是一个表达式对象,用来设定应用于m个插补的统计分析方法。方法包括做线回归模型的lm()函数、做广义线性模型的glm()函数、做广义可加模型的gam()、及做负二项模型的nbrm()函数。fit是一个包含m个单独统计分析结果的列表对象;pooled是一个包含这m个统计分析平均结果的列表对象。</pre><pre name="code" class="plain">library(mice)
data(sleep,package="VIM")
imp<-mice(sleep,seed=1234)
fit<-with(imp,lm(Dream~Span+Gest))
pooled<-pool(fit)
summary(pooled)
impimp$imp$Dream
利用complete()函数可观察m个插补数据集中的任意一个,格式为:complete(imp,action=#)
eg:
dataset3<-complete(imp,action=3)
dataset3
8.处理缺失值的其他方法
(1)成对删除
处理含缺失值的数据集时,成对删除常作为行删除的备选方法使用。对于成对删除,观测只是当它含缺失数据的变量涉及某个特定分析时才会被删除。
cor(sleep,use="pairwise.complete.obs")
虽然成对删除似乎利用了所有可用数据,但实际上每次计算只用了不同的数据集,这将会导致一些扭曲,故建议不要使用该方法。
(2)简单(非随机)插补
简单插补,即用某个值(如均值、中位数或众数)来替换变量中的缺失值。注意,替换是非随机的,这意味着不会引入随机误差(与多重衬托不同)。
简单插补的一个优点是,解决“缺失值问题”时不会减少分析过程中可用的样本量。虽然 简单插补用法简单,但对于非MCAR的数据会产生有偏的结果。若缺失数据的数目非常大,那么简单插补很可能会低估标准差、曲解变量间的相关性,并会生成不正确的统计检验的p值。应尽量避免使用该方法。
常用方法:Sweave和odfWeave。
Sweave包可将R代码及输出嵌入到LaTeX文档中,从而得到 PDF、PostScript和DVI格式的高质量排版报告。
odfWeave包可将R代码及输出嵌入到ODF(Open Documents Format)的文档中。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08在商业竞争日益激烈的当下,“用数据说话” 已从企业的 “加分项” 变为 “生存必需”。然而,零散的数据分析无法持续为业务赋能 ...
2025-09-08随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04CDA 数据分析师:驾驭数据范式,释放数据价值 在数字化转型浪潮席卷全球的当下,数据已成为企业核心生产要素。而 CDA(Certified ...
2025-09-04K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03CDA 数据分析师与数据分析:解锁数据价值的关键 在数字经济高速发展的今天,数据已成为企业核心资产与社会发展的重要驱动力。无 ...
2025-09-03解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02CDA 数据分析师:助力企业破解数据需求与数据分析需求难题 在数字化浪潮席卷全球的当下,数据已成为企业核心战略资产。无论是市 ...
2025-09-02Power BI 度量值实战:基于每月收入与税金占比计算累计税金分摊金额 在企业财务分析中,税金分摊是成本核算与利润统计的核心环节 ...
2025-09-01巧用 ALTER TABLE rent ADD INDEX:租房系统数据库性能优化实践 在租房管理系统中,rent表是核心业务表之一,通常存储租赁订单信 ...
2025-09-01CDA 数据分析师:企业数字化转型的核心引擎 —— 从能力落地到价值跃迁 当数字化转型从 “选择题” 变为企业生存的 “必答题”, ...
2025-09-01数据清洗工具全景指南:从入门到进阶的实操路径 在数据驱动决策的链条中,“数据清洗” 是决定后续分析与建模有效性的 “第一道 ...
2025-08-29机器学习中的参数优化:以预测结果为核心的闭环调优路径 在机器学习模型落地中,“参数” 是连接 “数据” 与 “预测结果” 的关 ...
2025-08-29