京公网安备 11010802034615号
经营许可证编号:京B2-20210330
网站分析WA与互联网数据分析挖据的区别
一直以来有不少朋友来信或留言,询问网站分析WA(web analysis)与互联网数据分析挖掘的区别。这个问题看上去的确比较纠缠不清,不是因为字面理解,而是因为在当前的互联网行业的具体实践。今天是周末,我百无聊赖之际试图针对该问题做个肤浅的一孔之见,一方面希望能抛砖引玉,接受大家的批评指正;另一方面也算是对这个周末光阴有个交代,我在这个世界混吃混喝,总是要奉献点什么的吧。
虽然从字面理解,网站分析WA应该被包容在互联网数据分析挖掘的大范畴里面,但是实际情况却是当前“网站分析WA”已经成了一个非常独立的明确定义的专业名称和专业领域,从而事实上已经与当前的“互联网数据分析挖掘”有了一个明确清晰的界限,所以关注互联网,关注互联网的数据分析应用的人,对于“网站分析WA”和“互联网数据分析挖掘”都应该了解并清楚知道两者在实践应用上的主要区别。
在当今中国互联网行业实际上起的作用是一个“网站分析WA”门户网站(知识库)的角色,这个作者(博主、站长)就是宋星。从一定程度上说,宋星就是目前中国网站分析WA的代名词。呵呵,所谓时势造英雄,今日稳坐中国网站分析WA江湖头把交椅的宋头领,大约应该感恩这个伟大的互联网时代,感谢命运感谢生活!!!
从我个人的肤浅理解上看,目前的“网站分析WA”核心就是关注分析网站的“趋势、转化与细分”,实现这些核心的手段就是如何科学有效地布点(只有有效打点,才可以全面记录详细数据),结合目前成熟的一系列分析工具,“网站分析WA”可以进行访客分析(新老客户分析,不同分层分析,等等)、页面分析、转化及结构分析、流量来源分析,等等。个人认为,宋星对于当今国内网站分析WA最大的价值和贡献在于他系统化整理、定义了一批该领域的专业名称、体系化的分析指标、该领域的系统化的分析思想和思路(实际上起到了类似的行业标准起草者的角色)。
但是,如果我们一定要从“网站分析WA”中发现它与目前“互联网数据分析挖掘”的区别的话,我个人觉得区别体现在以下几个方面(我是个井底之蛙,冒昧做个肤浅小结,期待各位指正):
第一:从分析的焦距来看,“网站分析WA”主要关注分析的是网站的宏观表现,而“互联网数据分析挖掘”既可以分析网站的宏观表现,也可以分析微观表现(细化到具体的某个用户member_id,比如可以预测任何个体的流失率,任何个体的交叉销售可能性,等等);
第二,从分析的技术算法看,“互联网数据分析挖掘”囊括了目前所有的数据挖掘算法技术,但是“网站分析WA”似乎很少涉猎挖掘算法,(而更关注对于流量的监控,如何有效监控,如何有效定义指标);
第三,从应用场景来看,“网站分析WA”对于起步阶段的中小型网站,中小型B2C, C2C的应用可以有效提升运营效率,并且对于互联网行业的数据分析师来说都是非常好的入门基础和分析思路借鉴、分析框架参考;而对于大型的互联网行业,大型的或者比较成熟的B2C, C2C网站而言,“网站分析WA”作为分析思路的价值远远高于其作为具体分析手段的价值,在这些大型或者比较成熟的互联网企业里,“互联网数据分析挖掘”可能更加容易满足其多样性复杂性的业务分析需求;
第四,从使用的人群来看,“网站分析WA”固然应该被数据分析专业人员掌握,但是其同样也适合来武装互联网行业里的运营人员,运营团队等相关业务团队;而“互联网数据分析挖掘”更多的是用来武装专职的数据分析人员和分析团队的。我目前打工的东家是中国互联网行业的一家旗舰公司,也是一个著名的行业平台,我注意到我的业务需求方(运营部门)在日常运营工作中他们自觉不自觉用到的就是“网站分析WA”里所重点关注的诸如流量来源分析,页面结构优化,流量转化漏斗,等等;
说了这么多废话,语无伦次,颠三倒四,也不知道是否表达清楚,更不知道看官是否明白。其实,但凡文字总结的都是有误导欠准确的,真正的理解和掌握都是无法用文字和语言来总结的,真正的理解和掌握只能是心有灵犀的会心一笑。遥想当年灵山法会,世尊拈花,众皆不识,唯有迦叶破颜微笑,世尊乃曰:“吾有正法眼藏,涅槃妙心,实相无相,付诸于汝。”此乃教外别传、不立文字、直承当下之无上法门,后人笼统目之为“禅”。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
数据分析师认证考试全面升级后,除了考试场次和报名时间,小伙伴们最关心的就是报名费了,报 ...
2025-12-23CDA中国官网是全国统一的数据分析师认证报名网站,由认证考试委员会与持证人会员、企业会员以及行业知名第三方机构共同合作,致 ...
2025-12-23在Power BI数据可视化分析中,矩阵是多维度数据汇总的核心工具,而“动态计算平均值”则是矩阵分析的高频需求——无论是按类别计 ...
2025-12-23在SQL数据分析场景中,“日期转期间”是高频核心需求——无论是按日、周、月、季度还是年度统计数据,都需要将原始的日期/时间字 ...
2025-12-23在数据驱动决策的浪潮中,CDA(Certified Data Analyst)数据分析师的核心价值,早已超越“整理数据、输出报表”的基础层面,转 ...
2025-12-23在使用Excel数据透视表进行数据分析时,我们常需要在透视表旁添加备注列,用于标注数据背景、异常说明、业务解读等关键信息。但 ...
2025-12-22在MySQL数据库的性能优化体系中,索引是提升查询效率的“核心武器”——一个合理的索引能将百万级数据的查询耗时从秒级压缩至毫 ...
2025-12-22在数据量爆炸式增长的数字化时代,企业数据呈现“来源杂、格式多、价值不均”的特点,不少CDA(Certified Data Analyst)数据分 ...
2025-12-22在企业数据化运营体系中,同比、环比分析是洞察业务趋势、评估运营效果的核心手段。同比(与上年同期对比)可消除季节性波动影响 ...
2025-12-19在数字化时代,用户已成为企业竞争的核心资产,而“理解用户”则是激活这一资产的关键。用户行为分析系统(User Behavior Analys ...
2025-12-19在数字化转型的深水区,企业对数据价值的挖掘不再局限于零散的分析项目,而是转向“体系化运营”——数据治理体系作为保障数据全 ...
2025-12-19在数据科学的工具箱中,析因分析(Factor Analysis, FA)、聚类分析(Clustering Analysis)与主成分分析(Principal Component ...
2025-12-18自2017年《Attention Is All You Need》一文问世以来,Transformer模型凭借自注意力机制的强大建模能力,在NLP、CV、语音等领域 ...
2025-12-18在CDA(Certified Data Analyst)数据分析师的时间序列分析工作中,常面临这样的困惑:某电商平台月度销售额增长20%,但增长是来 ...
2025-12-18在机器学习实践中,“超小数据集”(通常指样本量从几十到几百,远小于模型参数规模)是绕不开的场景——医疗领域的罕见病数据、 ...
2025-12-17数据仓库作为企业决策分析的“数据中枢”,其价值完全依赖于数据质量——若输入的是缺失、重复、不一致的“脏数据”,后续的建模 ...
2025-12-17在CDA(Certified Data Analyst)数据分析师的日常工作中,“随时间变化的数据”无处不在——零售企业的每日销售额、互联网平台 ...
2025-12-17在休闲游戏的运营体系中,次日留存率是当之无愧的“生死线”——它不仅是衡量产品核心吸引力的首个关键指标,更直接决定了后续LT ...
2025-12-16在数字化转型浪潮中,“以用户为中心”已成为企业的核心经营理念,而用户画像则是企业洞察用户、精准决策的“核心工具”。然而, ...
2025-12-16在零售行业从“流量争夺”转向“价值深耕”的演进中,塔吉特百货(Target)以两场标志性实践树立了行业标杆——2000年后的孕妇精 ...
2025-12-15