作者 | 赵坚毅博士 出品 | CDA数据分析师 人类,你好,我是病毒小C,在今天新型冠状病毒流行的时候,我想向你们做一个自白,让人类也清楚我们病毒的世界! 今天新型冠状病毒大为流行 ...
2020-02-04各位学员,你们好: 自1月25日起,CDA团队开始整合优质讲师资源,准备远程教学的相关设备及服务,到目前为止,无论是课程安排还是答疑服务,我们都做足了充分的准备。此外,针对CDA数据分析就业班正在上课 ...
2020-02-02作者 | CDA数据分析师 之前的文章写了Python的基础知识,从这部分内容开始正式进入到正式的数据分析过程中,主要讲述每个数据分析过程都会用到什么操作,这些操作用Excel是怎样实现的,如果用Python,那么 ...
2020-01-16作者 | CDA数据分析师 进行到这一步就可以算是开始正式的烹饪了,在这部分之前的数据操作部分我们列举了一些不同维度的分析指标,这一章我们主要看看这些指标都是怎么计算出来的。 一、算术运算 ...
2020-01-16作者 | CDA数据分析师 我们把菜品挑选出来以后,就可以开始切菜了。比如要做凉拌黄瓜丝,把黄瓜找出来以后,那就可以把黄瓜切成丝了。 一、数值替换 数值替换就是将数值A替换成B,可以用在异常值 ...
2020-01-16作者 | CDA数据分析师 在数据选择之前是要把所有的菜品都洗好并放在不同的容器里。现在要进行切配了,需要把这些菜品挑选出来,比如做一盘凉拌黄瓜,需要先把黄瓜找出来;要做一盘可乐鸡翅,需要先把鸡翅找 ...
2020-01-16作者 | CDA数据分析师 从菜市场买来的菜,总有一些不太好的,所以把菜买回来以后要先做一遍预处理,把那些不太好的部分扔掉。现实中大部分的数据都类似于菜市场的菜品,拿到以后都要先做一次预处理。 ...
2020-01-16作者 | CDA数据分析师 俗话说,巧妇难为无米之炊。不管你厨艺有多好,如果没有食材,也做不出香甜可口的饭菜来,所以想要做出饭菜来,首先要做的就是要买米买菜。而数据分析就好比是做饭,首先也应该是准 ...
2020-01-16作者 | Niccolo Mejia 编译 | CDA数据分析师 What is Predictive Analytics? – An Informed Definition 预测分析可能是金融机构,银行,保险公司和医疗保健公司使用的最常见的AI应 ...
2020-01-13作者 | Alexander Felfernig, Seda Polat Erdeniz 编译 | CDA数据科学研究院 Recommender systems in the Internet of Things 1、背景介绍 物联网是一种联网的基础架构,是物联网 ...
2020-01-13作者 | CDA数据分析师 百度董事长兼首席执行官——李彦宏认为,5G时代的到来,可能会彻底改变中国互联网发展的方向,而AI将在其中扮演关键角色。 人工智能第三次在全球兴 ...
2020-01-13作者 | CDA数据分析师 1、前言 1.1 了解编程语言 正如人与人之间的沟通需要语言,人与计算机之间的沟通,也需要语言,连接人与计算机沟通的桥梁就是编程语言。任何编程语言只要用来开发程序 ...
2020-01-13作者 | A字头 来源 | 数据札记倌 有些朋友在工作中会有这样的困惑:明明我从早忙到晚,为什么得到的评价还不高? 要知道,企业对一个员工的评价 ...
2020-01-09作者 | CDA数据分析师 在过去的五年中,我们已经与医疗保健和制药业的许多领导者进行了交谈,而对于AI而言,医疗保健和制药业领导者报告的最紧迫的挑战是他们不确定如 ...
2020-01-09作者 | CDA数据分析师 应用聚类算法比选择最佳算法要容易得多。每种类型都有其优缺点,如果您要争取一个整洁的集群结构,则必须加以考虑。数据聚类是安排正确的整个数据模型的重要步骤。为了进行分 ...
2020-01-09作者 | 宋老师 来源 | JSong的数据科学小站 多重共线性是使用线性回归算法时经常要面对的一个问题。在其他算法中,例如决策树和贝叶斯,前者的建模过程是逐步递进,每次拆分只有一个变量参 ...
2020-01-08作者 | 前瞻产业研究院 来源 | ID: qianzhancy 导读:在当下的中国城市语境中,人们对美好生活的向往,实际上是对城市生活的多样性,持续提出要求。那些气质更为开放、张 ...
2020-01-08作者 | CDA数据分析师 进行到这一步就可以开始正式的烹饪了。前面我们列举了不同纬度的分析指标,这一章我们主要看看这些指标都是怎么计算出来的。 一、算术运算 算术运算就是基本的加减乘 ...
2020-01-08作者 | CDA数据分析师 循环语句 1、for循环 For循环用来遍历任何序列的项目,这个序列可以是一个列表也可以是一个字符串,针对这个序列中的每个项目去执行相应的操 ...
2020-01-08来源:IT168 在不算太遥远的过去,业界对数据科学家的评判主要依据于他们发现、理解、管理和综合信息的能力。随着数据环境的不断发展和计算能力的不断提高,编码技能变 ...
2020-01-06在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15在机器学习入门领域,“鸢尾花数据集(Iris Dataset)” 是理解 “特征值” 与 “目标值” 的最佳案例 —— 它结构清晰、维度适 ...
2025-10-15在数据驱动的业务场景中,零散的指标(如 “GMV”“复购率”)就像 “散落的零件”,无法支撑系统性决策;而科学的指标体系,则 ...
2025-10-15在神经网络模型设计中,“隐藏层层数” 是决定模型能力与效率的核心参数之一 —— 层数过少,模型可能 “欠拟合”(无法捕捉数据 ...
2025-10-14在数字化浪潮中,数据分析师已成为企业 “从数据中挖掘价值” 的核心角色 —— 他们既要能从海量数据中提取有效信息,又要能将分 ...
2025-10-14在企业数据驱动的实践中,“指标混乱” 是最常见的痛点:运营部门说 “复购率 15%”,产品部门说 “复购率 8%”,实则是两者对 ...
2025-10-14在手游行业,“次日留存率” 是衡量一款游戏生死的 “第一道关卡”—— 它不仅反映了玩家对游戏的初始接受度,更直接决定了后续 ...
2025-10-13分库分表,为何而生? 在信息技术发展的早期阶段,数据量相对较小,业务逻辑也较为简单,单库单表的数据库架构就能够满足大多数 ...
2025-10-13在企业数字化转型过程中,“数据孤岛” 是普遍面临的痛点:用户数据散落在 APP 日志、注册系统、客服记录中,订单数据分散在交易 ...
2025-10-13在数字化时代,用户的每一次行为 —— 从电商平台的 “浏览→加购→购买”,到视频 APP 的 “打开→搜索→观看→收藏”,再到银 ...
2025-10-11在机器学习建模流程中,“特征重要性分析” 是连接 “数据” 与 “业务” 的关键桥梁 —— 它不仅能帮我们筛选冗余特征、提升模 ...
2025-10-11在企业的数据体系中,未经分类的数据如同 “杂乱无章的仓库”—— 用户行为日志、订单记录、商品信息混杂存储,CDA(Certified D ...
2025-10-11在 SQL Server 数据库操作中,“数据类型转换” 是高频需求 —— 无论是将字符串格式的日期转为datetime用于筛选,还是将数值转 ...
2025-10-10在科研攻关、工业优化、产品开发中,正交试验(Orthogonal Experiment)因 “用少量试验覆盖多因素多水平组合” 的高效性,成为 ...
2025-10-10在企业数据量从 “GB 级” 迈向 “PB 级” 的过程中,“数据混乱” 的痛点逐渐从 “隐性问题” 变为 “显性瓶颈”:各部门数据口 ...
2025-10-10在深度学习中,“模型如何从错误中学习” 是最关键的问题 —— 而损失函数与反向传播正是回答这一问题的核心技术:损失函数负责 ...
2025-10-09本文将从 “检验本质” 切入,拆解两种方法的核心适用条件、场景边界与实战选择逻辑,结合医学、工业、教育领域的案例,让你明确 ...
2025-10-09在 CDA 数据分析师的日常工作中,常会遇到这样的困惑:某电商平台 11 月 GMV 同比增长 20%,但究竟是 “长期趋势自然增长”,还 ...
2025-10-09Pandas 选取特定值所在行:6 类核心方法与实战指南 在使用 pandas 处理结构化数据时,“选取特定值所在的行” 是最高频的操作之 ...
2025-09-30球面卷积神经网络(SCNN) 为解决这一痛点,球面卷积神经网络(Spherical Convolutional Neural Network, SCNN) 应运而生。它通 ...
2025-09-30