
作者 | CDA数据分析师
在数据选择之前是要把所有的菜品都洗好并放在不同的容器里。现在要进行切配了,需要把这些菜品挑选出来,比如做一盘凉拌黄瓜,需要先把黄瓜找出来;要做一盘可乐鸡翅,需要先把鸡翅找出来。
数据分析也是同样的道理,你要分析什么,首先要把对应的数据筛选出来。
常规的数据选择主要有列选择、行选择、行列同时选择三种方式。
1、选择某一列/某几列
(1)Excel实现
在Excel中选择某一列直接用鼠标选中这一列即可;如果要同时选择多列,且待选择的列不是相邻的,这个时候就可以先选中其中一列,然后按住Ctrl键不放,再选择其他列。举个例子,同时选择客户姓名和成交时间这两列,如下图所示:
(2)Python实现
在Python中我们想要获取某列只需要在表df后面的方括号中指明要选择的列名即可。如果是一列,则只需要传入一个列名;如果是同时选择多列,则传入多个列名即可,多个列名用一个list存起来。
在Python中我们把这种通过传入列名选择数据的方法称为普通索引。
除了传入具体的列名,我们还可以传入具体列的位置,即第几列,对数据进行选取,通过传入位置来获取数据时需要用到iloc方法。
在上面的代码中,iloc后的方括号中逗号之前的部分表示要获取行的位置,只输入一个冒号,不输入任何数值表示获取所有的行;逗号之后的方括号表示要获取的列的位置,猎德位置同样是也是从0开始计数。
我们把这种通过传入具体位置来选择数据的方式称为位置索引。
2、选择连续的某几列
(1)Excel实现
在Excel中,要选择连续的几列时,直接用鼠标选中这几列即可操作。当然了,你也可以先选择一列,然后按住Ctrl键再去选择其他列,由于要选取的列时连续的,因此没有必要这么麻烦。
(2)Python实现
在Python中可以通过前面介绍的普通索引个位置索引获取某一列或多列的数据。当你要获取的是连续的某几列,用普通索引和位置索引也是可以做到的,但是因为你要获取的列是连续的,所以只要传入这些连续列的位置区间即可,同样需要用到iloc方法。
在上面的代码中,iloc后的方括号中逗号之前的表示选择的行,当只传入一个冒号时,表示选择所有行;逗号后面表示要选择列的位置区间,0:3表示选择第1列到第4列之间的值(包含第1列单不包含第4列),我们把这种通过传入一个位置区间来获取数据的方式称为切片索引。
1、选择某一行/某几行
(1)Excel实现
在Excel中选择行与选择列的方式是一样的,先选择一行,按住Ctrl键再选择其他行。
(2)Python实现
在Python中,获取行的方式主要有两种,一种是普通索引,即传入具体行索引的名称,需要用到loc方法;另一种是位置索引,即传入具体的行数,需要用到iloc方法。
为了看的更清楚,我们对行索引进行自定义。
2、选择连续的某几行
(1)Excel实现
在Excel中选择连续的某几行与选择连续的某几列的方法一致,不在赘述。
(2)Python实现
在Python中,选择连续的某几行时,你同样可以把要选择的每一个行索引名字或者行索引的位置输进去。很显然这是没有必要的,只要把连续行的位置用一个区间表示,然后传给iloc即可。
3、选择满足条件的行
前面说到获取某一列时,获取的是这一列的所有行,我们还可只筛选出这一列中满足条件的值。
比如年龄这一列,需要把非异常值(大于200的属于异常值),即小于200岁的年龄筛选出来,该怎么实现呢?
(1)Excel实现
在Excel中我们直接使用筛选功能,将满足条件的值筛选出来,筛选方法如下图所示:
筛选年龄小于200的数据前后的对比如下图所示:。
(2)Python实现
在Python中,我们直接在表名后面指明哪列要满足什么条件,就可以把满足条件的数据筛选出来。
我们把上面这种通过传入一个判断条件来选择数据的方式称为布尔索引。
传入的条件也可以是多个,如下为选择的年龄小于200且唯一识别码小于102的数据。
上面的数据选择都是针对单一的行或者列进行选择,实际业务中我们也会用到行、列同时选择,所谓的行、列同时选择就是选择出行和列的相交部分。
例如,我们要选择第二、三行和第二、三列相交部分的数据,下图中的阴影部分就是最终的选择结果。
行列同时选择在Excel中主要是通过鼠标拖拽实现的,与前面的单一行/列选择方法一致,此处不再赘述,接下来主要讲讲在Python中是如何实现的。
1、普通索引+普通索引选择指定的行和列
位置索引+位置索引是通过同时传入行、列索引的位置来获取数据,需要用到iloc方法。
loc方法中的第一对方括号表示行索引的选择,传入行索引的名称;loc方法中的第二对方括号表示列索引的选择,传入列索引的名称。
2、位置索引+位置索引选择指定行和列
位置索引+位置索引是通过同事传入行、列索引的位置来获取数据,需要用到iloc方法。
在iloc方法中的第一对方括号表示行索引的选择,传入要选择行索引的位置;第二对方括号表示列索引的选择,传入要选择列索引的位置。行和列索引的位置都是从0开始计数的。
3、布尔索引+普通索引选择指定的行和列
布尔索引+普通索引是先对表进行布尔索引选择行,然后通过普通索引选择列。
上面的代码表示选择年龄小于200的订单编号和年龄,先通过布尔索引选择出年龄小于200的所有行,然后通过普通索引选择订单编号和年龄这两列。
4、切片索引+切片索引选择指定的行和列
切片索引+切片索引是通过同时传入行、列索引的位置区间进行数据选择。
5、切片索引+普通索引选择指定的行和列
前面我们说过,如果是普通索引,就直接传入行或者列名,用loc方法即可;如果是切片索引,也就是传入行或者列的位置区间,要用iloc方法。如果是切片索引+普通索引,也就是行(列)用切片索引,列(行)用普通索引,这种交叉索引要用ix方法。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在神经网络模型设计中,“隐藏层层数” 是决定模型能力与效率的核心参数之一 —— 层数过少,模型可能 “欠拟合”(无法捕捉数据 ...
2025-10-14在数字化浪潮中,数据分析师已成为企业 “从数据中挖掘价值” 的核心角色 —— 他们既要能从海量数据中提取有效信息,又要能将分 ...
2025-10-14在企业数据驱动的实践中,“指标混乱” 是最常见的痛点:运营部门说 “复购率 15%”,产品部门说 “复购率 8%”,实则是两者对 ...
2025-10-14在手游行业,“次日留存率” 是衡量一款游戏生死的 “第一道关卡”—— 它不仅反映了玩家对游戏的初始接受度,更直接决定了后续 ...
2025-10-13分库分表,为何而生? 在信息技术发展的早期阶段,数据量相对较小,业务逻辑也较为简单,单库单表的数据库架构就能够满足大多数 ...
2025-10-13在企业数字化转型过程中,“数据孤岛” 是普遍面临的痛点:用户数据散落在 APP 日志、注册系统、客服记录中,订单数据分散在交易 ...
2025-10-13在数字化时代,用户的每一次行为 —— 从电商平台的 “浏览→加购→购买”,到视频 APP 的 “打开→搜索→观看→收藏”,再到银 ...
2025-10-11在机器学习建模流程中,“特征重要性分析” 是连接 “数据” 与 “业务” 的关键桥梁 —— 它不仅能帮我们筛选冗余特征、提升模 ...
2025-10-11在企业的数据体系中,未经分类的数据如同 “杂乱无章的仓库”—— 用户行为日志、订单记录、商品信息混杂存储,CDA(Certified D ...
2025-10-11在 SQL Server 数据库操作中,“数据类型转换” 是高频需求 —— 无论是将字符串格式的日期转为datetime用于筛选,还是将数值转 ...
2025-10-10在科研攻关、工业优化、产品开发中,正交试验(Orthogonal Experiment)因 “用少量试验覆盖多因素多水平组合” 的高效性,成为 ...
2025-10-10在企业数据量从 “GB 级” 迈向 “PB 级” 的过程中,“数据混乱” 的痛点逐渐从 “隐性问题” 变为 “显性瓶颈”:各部门数据口 ...
2025-10-10在深度学习中,“模型如何从错误中学习” 是最关键的问题 —— 而损失函数与反向传播正是回答这一问题的核心技术:损失函数负责 ...
2025-10-09本文将从 “检验本质” 切入,拆解两种方法的核心适用条件、场景边界与实战选择逻辑,结合医学、工业、教育领域的案例,让你明确 ...
2025-10-09在 CDA 数据分析师的日常工作中,常会遇到这样的困惑:某电商平台 11 月 GMV 同比增长 20%,但究竟是 “长期趋势自然增长”,还 ...
2025-10-09Pandas 选取特定值所在行:6 类核心方法与实战指南 在使用 pandas 处理结构化数据时,“选取特定值所在的行” 是最高频的操作之 ...
2025-09-30球面卷积神经网络(SCNN) 为解决这一痛点,球面卷积神经网络(Spherical Convolutional Neural Network, SCNN) 应运而生。它通 ...
2025-09-30在企业日常运营中,“未来会怎样” 是决策者最关心的问题 —— 电商平台想知道 “下月销量能否达标”,金融机构想预判 “下周股 ...
2025-09-30Excel 能做聚类分析吗?基础方法、进阶技巧与场景边界 在数据分析领域,聚类分析是 “无监督学习” 的核心技术 —— 无需预设分 ...
2025-09-29XGBoost 决策树:原理、优化与工业级实战指南 在机器学习领域,决策树因 “可解释性强、处理非线性关系能力突出” 成为基础模型 ...
2025-09-29