
作者 | CDA数据分析师
进行到这一步就可以算是开始正式的烹饪了,在这部分之前的数据操作部分我们列举了一些不同维度的分析指标,这一章我们主要看看这些指标都是怎么计算出来的。
算术运算就是基本的加减乘除,在Excel或者Python中数值类型的任意两列可以直接进行加、减、乘、除运算,Excel中的算术运算比较简单,这里就不展开了,下面主要介绍Python中的算术运算。
两列相加的具体实现如下图所示:
两列相减的具体实现如下图所示:
两列相乘的具体实现如下图所示:
两列相除的具体实现如下图所示:
任意一列加/减一个常数值,这一列中的所有值都加/减这个常数值,具体实现如下图所示:
任意一列乘/除一个常数值,这一列中的所有值都乘/除这个常数值,具体实现如下图所示:
比较运算和Python基础知识中讲到的比较运算一致,也是常规的大于、等于、小于之类的,只不过这里的比较是在列与列之间进行的。
在Excel中列与列之间的比较运算和Python中的方法一致,例子如下图所示。
下面是一些Python中列与列之间比较的例子。
上面讲到的算术运算和比较运算都是在列与列之间进行的,运算结果是有多少行的值就会返回多少个结果,而汇总运算是将数据进行汇总返回一个汇总以后的结果值。
1、count非空值计数
非空值计数就是计算某一个区域中非空(单元格)数值的个数。
在Excel中counta()函数用于计算某个区域中非空单元格的个数。与counta()函数类似的一个函数是count()函数,它用于计算某个区域中含有数字的单元格的个数。
在 Python 中,直接在整个数据表上调用 count()函数,返回的结果为该数据表中每列的非空值的个数,具体实现如下所示。
count()函数默认是求取每一列的非空数值的个数,可以通过修改axis参数让其等于1,来求取每一行的非空数值的个数。
也可以把某一列或者某一行索引出来,单独查看这一列或这一行的非空值个数。
2、sum求和
求和就是对某一区域中的所有数值进行加和操作。
在 Excel 中要求取某一区域的和,直接在 sum()函数后面的括号中指明要求和的区域,即要对哪些值进行求和操作即可。例子如下所示。
在Python中,直接在整个数据表上调用sum()函数,返回的是该数据表每一列的求和结果,例子如下所示。
sum()函数默认对每一列进行求和,可通过修改axis参数,让其等于1,来对每一行的数值进行求和操作。
也可以把某一列或者某一行索引出来,单独对这一列或这一行数据进行求和操作。
3、 mean求均值
求均值是针对某一区域中的所有值进行求算术平均值运算。均值是用来衡量数据一般情况的指标,容易受到极大值、极小值的影响。
在Excel中对某个区域内的值进行求平均值运算,用的是average()函数,只要在average()函数中指明要求均值运算的区域即可,比如:
在Python中的求均值利用的是mean()函数,如果对整个表直接调用mean()函数,返回的是该表中每一列的均值。
mean()函数默认是对数据表中的每一列进行求均值运算,可通过修改 axis 参数,让其等于1,来对每一行进行求均值运算。
也可以把某一列或者某一行通过索引的方式取出来,然后在这一行或这一列上调用mean()函数,单独求取这一行或这一列的均值。
4、 max求最大值
求最大值就是比较一组数据中所有数值的大小,然后返回最大的一个值。
在Excel和Python中,求最大值使用的都是max()函数,在Excel中同样只需要在max()函数中指明要求最大值的区域即可;在Python中,和其他函数一样,如果对整个表直接调用max()函数,则返回该数据表中每一列的最大值。max()函数也可以对每一行求最大值,还可以单独对某一行或某一列求最大值。
5、min求最小值
求最小值与求最大值是相对应的,通过比较一组数据中所有数值的大小,然后返回最小的那个值。
在Excel和Python中都使用min()函数来求最小值,它的使用方法与求最大值的类似,这里不再赘述。示例代码如下。
6、 median求中位数
中位数就是将一组含有n个数据的序列X按从小到大排列,位于中间位置的那个数。
中位数是以中间位置的数来反映数据的一般情况,不容易受到极大值、极小值的影响,因而在反映数据分布情况上要比平均值更有代表性。
现有序列为X:{X1、X2、X3、......、Xn}。
如果n为奇数,则中位数:
如果n为偶数,则中位数:
例如,1、3、5、7、9的中位数为5,而1、3、5、7的中位数为(3+5)/2=4。
在Excel和Python中求一组数据的中位数,都是使用median()函数来实现的。
下面为在Excel中求中位数的示例:
在Python中,median()函数的使用原则和其他函数的一致。
7、mode求众数
顾名思义,众数就是一组数据中出现次数最多的数,求众数就是返回这组数据中出现次数最多的那个数。
在Excel和Python中求众数都使用mode()函数,使用原则与其他函数完全一致。
在Excel中求众数的示例如下:
在Python中求众数的示例如下:
8、var求方差
方差是用来衡量一组数据的离散程度(即数据波动幅度)的。
在Excel和Python中求一组数据中的方差都使用var()函数。
下面为在Excel中求方差的示例:
在Python中,var()函数的使用原则和其他函数的一致。
9、std求标准差
标准差是方差的平方根,二者都是用来表示数据的离散程度的。
在Excel中计算标准差使用的是stdevp()函数,示例如下:
在Python中计算标准差使用的是std()函数,std()函数的使用原则与其他函数的一致,示例如下:
10、quantile求分位数
分位数是比中位数更加详细的基于位置的指标,分位数主要有四分之一分位数、四分之二分位数、四分之三分位数,而四分之二分位数就是中位数。
在Excel中求分位数用的是percentile()函数,示例如下:
在Python中求分位数用的是quantile()函数,要在quantile后的括号中指明要求取的分位数值,quantile()函数与其他函数的使用规则相同。
相关性常用来衡量两个事物之间的相关程度,比如我们前面举的例子:啤酒与尿布二者的相关性很强。我们一般用相关系数来衡量两者的相关程度,所以相关性计算其实就是计算相关系数,比较常用的是皮尔逊相关系数。
在Excel中求取相关系数用的是correl()函数,示例如下:
在Python中求取相关系数用的是corr()函数,示例如下:
还可以利用 corr()函数求取整个 DataFrame 表中各字段两两之间的相关性,示例如下:
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
DSGE 模型中的 Et:理性预期算子的内涵、作用与应用解析 动态随机一般均衡(Dynamic Stochastic General Equilibrium, DSGE)模 ...
2025-09-17Python 提取 TIF 中地名的完整指南 一、先明确:TIF 中的地名有哪两种存在形式? 在开始提取前,需先判断 TIF 文件的类型 —— ...
2025-09-17CDA 数据分析师:解锁表结构数据特征价值的专业核心 表结构数据(以 “行 - 列” 规范存储的结构化数据,如数据库表、Excel 表、 ...
2025-09-17Excel 导入数据含缺失值?详解 dropna 函数的功能与实战应用 在用 Python(如 pandas 库)处理 Excel 数据时,“缺失值” 是高频 ...
2025-09-16深入解析卡方检验与 t 检验:差异、适用场景与实践应用 在数据分析与统计学领域,假设检验是验证研究假设、判断数据差异是否 “ ...
2025-09-16CDA 数据分析师:掌控表格结构数据全功能周期的专业操盘手 表格结构数据(以 “行 - 列” 存储的结构化数据,如 Excel 表、数据 ...
2025-09-16MySQL 执行计划中 rows 数量的准确性解析:原理、影响因素与优化 在 MySQL SQL 调优中,EXPLAIN执行计划是核心工具,而其中的row ...
2025-09-15解析 Python 中 Response 对象的 text 与 content:区别、场景与实践指南 在 Python 进行 HTTP 网络请求开发时(如使用requests ...
2025-09-15CDA 数据分析师:激活表格结构数据价值的核心操盘手 表格结构数据(如 Excel 表格、数据库表)是企业最基础、最核心的数据形态 ...
2025-09-15Python HTTP 请求工具对比:urllib.request 与 requests 的核心差异与选择指南 在 Python 处理 HTTP 请求(如接口调用、数据爬取 ...
2025-09-12解决 pd.read_csv 读取长浮点数据的科学计数法问题 为帮助 Python 数据从业者解决pd.read_csv读取长浮点数据时的科学计数法问题 ...
2025-09-12CDA 数据分析师:业务数据分析步骤的落地者与价值优化者 业务数据分析是企业解决日常运营问题、提升执行效率的核心手段,其价值 ...
2025-09-12用 SQL 验证业务逻辑:从规则拆解到数据把关的实战指南 在业务系统落地过程中,“业务逻辑” 是连接 “需求设计” 与 “用户体验 ...
2025-09-11塔吉特百货孕妇营销案例:数据驱动下的精准零售革命与启示 在零售行业 “流量红利见顶” 的当下,精准营销成为企业突围的核心方 ...
2025-09-11CDA 数据分析师与战略 / 业务数据分析:概念辨析与协同价值 在数据驱动决策的体系中,“战略数据分析”“业务数据分析” 是企业 ...
2025-09-11Excel 数据聚类分析:从操作实践到业务价值挖掘 在数据分析场景中,聚类分析作为 “无监督分组” 的核心工具,能从杂乱数据中挖 ...
2025-09-10统计模型的核心目的:从数据解读到决策支撑的价值导向 统计模型作为数据分析的核心工具,并非简单的 “公式堆砌”,而是围绕特定 ...
2025-09-10CDA 数据分析师:商业数据分析实践的落地者与价值创造者 商业数据分析的价值,最终要在 “实践” 中体现 —— 脱离业务场景的分 ...
2025-09-10机器学习解决实际问题的核心关键:从业务到落地的全流程解析 在人工智能技术落地的浪潮中,机器学习作为核心工具,已广泛应用于 ...
2025-09-09SPSS 编码状态区域中 Unicode 的功能与价值解析 在 SPSS(Statistical Product and Service Solutions,统计产品与服务解决方案 ...
2025-09-09