
作者 | CDA数据分析师
进行到这一步就可以开始正式的烹饪了。前面我们列举了不同纬度的分析指标,这一章我们主要看看这些指标都是怎么计算出来的。
一、算术运算
算术运算就是基本的加减乘除,在Excel或Python中数值类型的任意两列可以直接进行加、减、乘、除运算,而且是对应元素进行加、减、乘、除运算,Excel 中的算术运算比较简单,这里就不展开了,下面主要介绍Python中的算术运算。
列相加的具体实现如下所示。
两列相减的具体实现如下所示。
两列相乘的具体实现如下所示。
两列相除的具体实现如下所示。
任意一列加/减一个常数值,这一列中的所有值都加/减这个常数值,具体实现如下所示。
任意一列乘/除一个常数值,这一列中的所有值都乘/除这一常数值
二、比较运算
比较运算和Python基础知识中讲到的比较运算一致,也是常规的大于、等于、小于之类的,只不过这里的比较是在列与列之间进行的。常用的比较运算符见2.9.2节。
在Excel中列与列之间的比较运算和Python中的方法一致,例子如下图所示。
下面是一些Python中列与列之间比较的例子。
三、汇总运算
讲到的算术运算和比较运算都是在列与列之间进行的,运算结果是有多少行的值就会返回多少个结果,而汇总运算是将数据进行汇总返回一个汇总以后的结果值。
1、 count非空值计数
非空值计数就是计算某一个区域中非空(单元格)数值的个数。
在Excel中 counta ( ) 函数用于计算某个区域中非空单元格的个数。与 counta ( ) 函数类似的一个函数是count()函数,它用于计算某个区域中含有数字的单元格的个数。
在 Python 中,直接在整个数据表上调用 count ( ) 函数,返回的结果为该数据表中每列的非空值的个数,具体实现如下所示。
count ( ) 函数默认是求取每一列的非空数值的个数,可以通过修改axis参数让其等于1,来求取每一行的非空数值的个数。
也可以把某一列或者某一行索引出来,单独查看这一列或这一行的非空值个数。
2、 sum求和
求和就是对某一区域中的所有数值进行加和操作。
在 Excel 中要求取某一区域的和,直接在 sum ( ) 函数后面的括号中指明要求和的区域,即要对哪些值进行求和操作即可。例子如下所示。
在Python中,直接在整个数据表上调用 sum ( ) 函数,返回的是该数据表每一列的求和结果,例子如下所示。
sum ( ) 函数默认对每一列进行求和,可通过修改axis参数,让其等于1,来对每一行的数值进行求和操作。
也可以把某一列或者某一行索引出来,单独对这一列或这一行数据进行求和操作。
3、mean求均值
求均值是针对某一区域中的所有值进行求算术平均值运算。均值是用来衡量数据一般情况的指标,容易受到极大值、极小值的影响。
在Excel中对某个区域内的值进行求平均值运算,用的是 average ( ) 函数,只要在average ( ) 函数中指明要求均值运算的区域即可,比如:
在Python中的求均值利用的是mean()函数,如果对整个表直接调用 mean ( ) 函数,返回的是该表中每一列的均值。
mean ( ) 函数默认是对数据表中的每一列进行求均值运算,可通过修改 axis 参数,让其等于1,来对每一行进行求均值运算。
也可以把某一列或者某一行通过索引的方式取出来,然后在这一行或这一列上调用mean ( ) 函数,单独求取这一行或这一列的均值。
4、 max求最大值
求最大值就是比较一组数据中所有数值的大小,然后返回最大的一个值。
在Excel和Python中,求最大值使用的都是 max ( ) 函数,在Excel中同样只需要在 max ( ) 函数中指明要求最大值的区域即可;在Python中,和其他函数一样,如果对整个表直接调用 max ( ) 函数,则返回该数据表中每一列的最大值。 max ( ) 函数也可以对每一行求最大值,还可以单独对某一行或某一列求最大值。
5、 min求最小值
求最小值与求最大值是相对应的,通过比较一组数据中所有数值的大小,然后返回最小的那个值。
在Excel和Python中都使用 min ( ) 函数来求最小值,它的使用方法与求最大值的类似,这里不再赘述。示例代码如下。
6、 median求中位数
中位数就是将一组含有n个数据的序列X按从小到大排列,位于中间位置的那个数。
中位数是以中间位置的数来反映数据的一般情况,不容易受到极大值、极小值的影响,因而在反映数据分布情况上要比平均值更有代表性。
现有序列为X:{X1、X2、X3、......、Xn}。
如果n为奇数,则中位数:
如果n为偶数,则中位数:
例如,1、3、5、7、9的中位数为5,而1、3、5、7的中位数为(3+5)/2=4。
在Excel和Python中求一组数据的中位数,都是使用 median ( ) 函数来实现的。
下面为在Excel中求中位数的示例:
在Python中,median ( ) 函数的使用原则和其他函数的一致。
7、mode求众数
顾名思义,众数就是一组数据中出现次数最多的数,求众数就是返回这组数据中出现次数最多的那个数。
在Excel和Python中求众数都使用 mode ( ) 函数,使用原则与其他函数完全一致。
在Excel中求众数的示例如下:
在Python中求众数的示例如下:
8、 var 求方差
方差是用来衡量一组数据的离散程度(即数据波动幅度)的。
在Excel和Python中求一组数据中的方差都使用 var ( ) 函数。
下面为在Excel中求方差的示例:
在Python中, var ( ) 函数的使用原则和其他函数的一致。
9、 std 求标准差
标准差是方差的平方根,二者都是用来表示数据的离散程度的。
在Excel中计算标准差使用的是 stdevp ( ) 函数,示例如下:
在 Python 中计算标准差使用的是 std ( ) 函数, std ( ) 函数的使用原则与其他函数的一致,示例如下:
10、 quantile 求分位数
分位数是比中位数更加详细的基于位置的指标,分位数主要有四分之一分位数、四分之二分位数、四分之三分位数,而四分之二分位数就是中位数。
在Excel中求分位数用的是 percentile ( ) 函数,示例如下:
在Python中求分位数用的是 quantile ( ) 函数,要在 quantile 后的括号中指明要求取的分位数值, quantile ( ) 函数与其他函数的使用规则相同。
四、 相关性运算
相关性常用来衡量两个事物之间的相关程度,比如我们前面举的例子:啤酒与尿布二者的相关性很强。我们一般用相关系数来衡量两者的相关程度,所以相关性计算其实就是计算相关系数,比较常用的是皮尔逊相关系数。
在Excel中求取相关系数用的是 correl ( ) 函数,示例如下:
在Python中求取相关系数用的是 corr ( ) 函数,示例如下:
还可以利用 corr( ) 函数求取整个 DataFrame 表中各字段两两之间的相关性,示例如下:
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
如何考取数据分析师证书:以 CDA 为例 在数字化浪潮席卷各行各业的当下,数据分析师已然成为企业挖掘数据价值、驱动决策的 ...
2025-07-15CDA 精益业务数据分析:驱动企业高效决策的核心引擎 在数字经济时代,企业面临着前所未有的数据洪流,如何从海量数据中提取有 ...
2025-07-15MySQL 无外键关联表的 JOIN 实战:数据整合的灵活之道 在 MySQL 数据库的日常操作中,我们经常会遇到需要整合多张表数据的场景 ...
2025-07-15Python Pandas:数据科学的瑞士军刀 在数据驱动的时代,面对海量、复杂的数据,如何高效地进行处理、分析和挖掘成为关键。 ...
2025-07-15用 SQL 生成逆向回滚 SQL:数据操作的 “后悔药” 指南 在数据库操作中,误删数据、错改字段或误执行批量更新等问题时有发生。 ...
2025-07-14t检验与Wilcoxon检验的选择:何时用t.test,何时用wilcox.test? t 检验与 Wilcoxon 检验的选择:何时用 t.test,何时用 wilcox. ...
2025-07-14AI 浪潮下的生存与进阶: CDA数据分析师—开启新时代职业生涯的钥匙(深度研究报告、发展指导白皮书) 发布机构:CDA数据科 ...
2025-07-13LSTM 模型输入长度选择技巧:提升序列建模效能的关键 在循环神经网络(RNN)家族中,长短期记忆网络(LSTM)凭借其解决长序列 ...
2025-07-11CDA 数据分析师报考条件详解与准备指南 在数据驱动决策的时代浪潮下,CDA 数据分析师认证愈发受到瞩目,成为众多有志投身数 ...
2025-07-11数据透视表中两列相乘合计的实用指南 在数据分析的日常工作中,数据透视表凭借其强大的数据汇总和分析功能,成为了 Excel 用户 ...
2025-07-11尊敬的考生: 您好! 我们诚挚通知您,CDA Level I和 Level II考试大纲将于 2025年7月25日 实施重大更新。 此次更新旨在确保认 ...
2025-07-10BI 大数据分析师:连接数据与业务的价值转化者 在大数据与商业智能(Business Intelligence,简称 BI)深度融合的时代,BI ...
2025-07-10SQL 在预测分析中的应用:从数据查询到趋势预判 在数据驱动决策的时代,预测分析作为挖掘数据潜在价值的核心手段,正被广泛 ...
2025-07-10数据查询结束后:分析师的收尾工作与价值深化 在数据分析的全流程中,“query end”(查询结束)并非工作的终点,而是将数 ...
2025-07-10CDA 数据分析师考试:从报考到取证的全攻略 在数字经济蓬勃发展的今天,数据分析师已成为各行业争抢的核心人才,而 CDA(Certi ...
2025-07-09【CDA干货】单样本趋势性检验:捕捉数据背后的时间轨迹 在数据分析的版图中,单样本趋势性检验如同一位耐心的侦探,专注于从单 ...
2025-07-09year_month数据类型:时间维度的精准切片 在数据的世界里,时间是最不可或缺的维度之一,而year_month数据类型就像一把精准 ...
2025-07-09CDA 备考干货:Python 在数据分析中的核心应用与实战技巧 在 CDA 数据分析师认证考试中,Python 作为数据处理与分析的核心 ...
2025-07-08SPSS 中的 Mann-Kendall 检验:数据趋势与突变分析的有力工具 在数据分析的广袤领域中,准确捕捉数据的趋势变化以及识别 ...
2025-07-08备战 CDA 数据分析师考试:需要多久?如何规划? CDA(Certified Data Analyst)数据分析师认证作为国内权威的数据分析能力认证 ...
2025-07-08