作者 | 刘顺祥 来源 | 数据分析1480 在《Python数据清洗(一):类型转换和冗余数据删除》和《Python数据清洗(二):缺失值识别与处理》文中已经讲解了有关数据中重复观测和缺失值的识别与处 ...
2019-12-20作者 | CDA数据分析师 Markdown简介 Markdown是一种可以使用普通文本编辑器编写的标记语言,我们可以通过简单的标记语法,可以使普通的文本具有一定的格式。Markdown的语法简单明了,非常易于我 ...
2019-12-20作者 | 傅一平 来源 | 与数据同行 最近中国移动提出了DICT战略,显示其在政企市场进一步拓展的雄心,在这个背景下,重新探讨下运营商的大数据变现很有意义。虽然近半年“大数据圈”似乎有 ...
2019-12-19作者 | 网络大数据 来源 | raincent_com 转眼间,2019年只剩下不到两个月了。人工智能的热度依旧,只是在资本市场,看空的投资人也越来越多了。从当年大数据的发展趋势看,这种情况反而对 ...
2019-12-19作者 | Digvijay Upadhyay 编译 | 风车云马 大数据分析能够帮助企业的收入在短时间内翻一番。如果你希望在未来几年快速取得成功,就离不开数据的智能分析。这就是为什么几乎所有的跨国企业 ...
2019-12-19作者 | 诸葛io数据教练 什么是象限分析法? 看上面这张图,你看出来了什么? 是的,一个初中时就学会的坐标轴,X轴从左到右是点击率的高低,Y轴从下到上是转化率的高低,形成了4个象限 ...
2019-12-18作者 | SUNIL RAY 编译 | CDA数据分析师 Simple Yet Powerful Excel Tricks for Analyzing Data Microsoft Excel是目前世界上被使用的最广泛的数据分析工具之一 使用Ex ...
2019-12-18作者 | Low Wei Hong 译者 | Sambodhi 导读:数据科学其实就是一门数学、计算机、软件相关的复合型的技术,离开编程自然是无法存在的。无论是数据科学家还是数据分析师,都需要跨学科人才 ...
2019-12-18作者 | 我的智慧生活 来源 | 咪付 生活中,距离通常是用于形容两个地方或两个物体之间的远近。在人工智能机器学习领域,常使用距离来衡量两个样本之间的相似度。 “物以类聚” 我 ...
2019-12-17作者 | 我的智慧生活 来源 | 咪付 在人工智能领域,机器学习的效果需要用各种指标来评价。本文将阐述机器学习中的常用性能评价指标,矢量卷积与神经网格的评价指标不包括在内。 训练与 ...
2019-12-17作者 | Christopher Dossman 编译 | ronghuaiyang 在机器学习中,有许多方法来构建产品或解决方案,每种方法都假设不同的东西。很多时候,如何识别哪些假设是合理的并不明显。刚接触机器学 ...
2019-12-16作者 | 猎聘大数据研究院 来源 | 猎聘(liepinwang) 本报告核心洞察: Ø 2019年三季度中高端人才紧缺程度总体达到今年前三季度最高水平。 Ø 互联网、房地产人才供需稳坐头两把交 ...
2019-12-16作者 | 数据海洋 来源 | haiyangxinyong 很多从事数据分析的同事都以为数据分析师,应该是通过数据对业务团队决策、公司管理层的决策进行“指点江山”。在实际工作内容应该是做数据分析报 ...
2019-12-16作者 | SHAROON SAXENA 编译 | CDA数据分析师 Everything you Should Know about p-value from Scratch for Data Science 介绍 当你向有抱负的数据科学家谈论p值时,以下情况 ...
2019-12-13作者 | SHAROON SAXENA 编译 | CDA数据分析师 Mathematics behind Machine Learning - The Core Concepts you Need to Know 介绍 “学习机器学习算法背后的数学有什么用?我 ...
2019-12-13作者 | 数据海洋 来源 | haiyangxinyong 当一个公司的业务团队,可以比较方便准确、及时、完整的看到数据,往往都会很容易从数据的变化中看到业务问题。再通过关键业务维度的拆分,可以定 ...
2019-12-13作者 | Oleksii Kharkovyna 编译 | 夏夜 当下我们生活在数据的时代里。机器学习和数据分析技术已经成为了我们当今生活密不可分的一部分。那接下来会怎样呢? 在这篇博客中,我不打算预 ...
2019-12-12作者 | Tessella 编译 | CDA数据分析师 将AI专有技术应用于从世界领先,最强大的科学仪器收集的庞大数据池中,可以加速科学发现的过程。强大的机器学习方法提供了从原始实验数据中提取科学 ...
2019-12-12作者 | 数据海洋 来源 | haiyangxinyong 一名数据分析师不管在什么行业,在什么类型的企业任职,把服务公司的业务流程、业务逻辑、业务与数据对应起来这是基础的基础。在这个前提下,通过 ...
2019-12-12作者 | KHYATI MAHENDRU 编译 | CDA数据分析师 损失函数实际上是我们经常使用的这些技术的核心,本文介绍了多种损失函数,他们的工作位置以及如何在Python中进行编码。 前言 首先想 ...
2019-12-11在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15在机器学习入门领域,“鸢尾花数据集(Iris Dataset)” 是理解 “特征值” 与 “目标值” 的最佳案例 —— 它结构清晰、维度适 ...
2025-10-15在数据驱动的业务场景中,零散的指标(如 “GMV”“复购率”)就像 “散落的零件”,无法支撑系统性决策;而科学的指标体系,则 ...
2025-10-15在神经网络模型设计中,“隐藏层层数” 是决定模型能力与效率的核心参数之一 —— 层数过少,模型可能 “欠拟合”(无法捕捉数据 ...
2025-10-14在数字化浪潮中,数据分析师已成为企业 “从数据中挖掘价值” 的核心角色 —— 他们既要能从海量数据中提取有效信息,又要能将分 ...
2025-10-14在企业数据驱动的实践中,“指标混乱” 是最常见的痛点:运营部门说 “复购率 15%”,产品部门说 “复购率 8%”,实则是两者对 ...
2025-10-14在手游行业,“次日留存率” 是衡量一款游戏生死的 “第一道关卡”—— 它不仅反映了玩家对游戏的初始接受度,更直接决定了后续 ...
2025-10-13分库分表,为何而生? 在信息技术发展的早期阶段,数据量相对较小,业务逻辑也较为简单,单库单表的数据库架构就能够满足大多数 ...
2025-10-13在企业数字化转型过程中,“数据孤岛” 是普遍面临的痛点:用户数据散落在 APP 日志、注册系统、客服记录中,订单数据分散在交易 ...
2025-10-13在数字化时代,用户的每一次行为 —— 从电商平台的 “浏览→加购→购买”,到视频 APP 的 “打开→搜索→观看→收藏”,再到银 ...
2025-10-11在机器学习建模流程中,“特征重要性分析” 是连接 “数据” 与 “业务” 的关键桥梁 —— 它不仅能帮我们筛选冗余特征、提升模 ...
2025-10-11在企业的数据体系中,未经分类的数据如同 “杂乱无章的仓库”—— 用户行为日志、订单记录、商品信息混杂存储,CDA(Certified D ...
2025-10-11在 SQL Server 数据库操作中,“数据类型转换” 是高频需求 —— 无论是将字符串格式的日期转为datetime用于筛选,还是将数值转 ...
2025-10-10在科研攻关、工业优化、产品开发中,正交试验(Orthogonal Experiment)因 “用少量试验覆盖多因素多水平组合” 的高效性,成为 ...
2025-10-10在企业数据量从 “GB 级” 迈向 “PB 级” 的过程中,“数据混乱” 的痛点逐渐从 “隐性问题” 变为 “显性瓶颈”:各部门数据口 ...
2025-10-10在深度学习中,“模型如何从错误中学习” 是最关键的问题 —— 而损失函数与反向传播正是回答这一问题的核心技术:损失函数负责 ...
2025-10-09本文将从 “检验本质” 切入,拆解两种方法的核心适用条件、场景边界与实战选择逻辑,结合医学、工业、教育领域的案例,让你明确 ...
2025-10-09