京公网安备 11010802034615号
经营许可证编号:京B2-20210330
作者 | 数据海洋
来源 | haiyangxinyong
一名数据分析师不管在什么行业,在什么类型的企业任职,把服务公司的业务流程、业务逻辑、业务与数据对应起来这是基础的基础。在这个前提下,通过我业务方的沟通与交流,你应该要了解的信息,在时间维度上,可能是未来1个月,3个月,6个月或者12个月:
了解信息后,以KPI具体数值的为例:数据分析师可以多问自己几个为什么,然后再和业务沟通你的理解,你才有可能真正理解KPI背后的逻辑与原因。业务包括:
很多数据分析师其实都不愿意或者认为去了解和理解这些内容不重要,或者感觉和自己做的事情无关。数据分析师从做的内容来说,可以分成以下几个层次,每次层次的内容和分析师所处的阶段和数据分析师资历有关系。
数据需求处理
所谓有数据需求,就是业务团队根据业务需要。向你提出的希望分析师能从数据库中提取的数据内容。例如:本月做了一个促销活动,想知道促销活动带来了多少新客、顾客,同时想看一下,老客户从过去某段时间内累计消费的频次分布。业务基于得到的数据进行活动总结,来分析这次活动是否达到预期。
在一些业务快速发展的企业,数据需求处理往往占据了数据分析师非常大的工作量。对于初级数据分析师来说,可能占据了他们80%左右的工作时间。
很多数据分析师发现,特别是初级数据分析师在工作一段时间后。天天都是拉数据,处理为完的数据需求;公司的大数据平台或者数据仓库建设不是那么完善,数据提取效率比较低。
有时候因为数据底层的问题,导致提取数据的时候,可能用的表不一样,导致数据取错误的数据。数据仓库底层往往表非常多,1千多张是很正常的。很多公司的数据开发/治理不是那么好,导致表的生命周期管理不是很好。经常对不常用的表可能会使用错误。
往往抱怨,数据分析师好像非常没有“技术”含量。但在我个人认为,这往往是最有“技术”含量的,数据需求往往是帮助一个数据分析师,去理解业务,理解业务痛点,和业务建立紧密关系的最重要的场景。
当我还是一个初级数据分析师的时候:
在处理前:
在收到业务数据需求的时候,我往往都会去思考,给自己提几个问题:
为什么要提这个需求?
业务中是谁真正会用这个数据?
要解决的问题是什么?
用这些数据能不能真正解决业务的问题?
在处理后:
当我给出数据需求的时候,一般我会把每个数据的口径说明清楚,对自己给出的数据做出检查。很多时候我会根据我的理解,再对这个需求提供多一些数据内容,帮助他可能要做进一步的数据分析。
对应数据需求的代码,我们做一下归档。往往很多时候,很多业务的数据需求都是会重复的或者相差不大,用写的代代码修改提取数据,速度要快很多。
在处理数据需求过程中,会和业务沟通确定一下数据口径,也一起问一下为什么会需要这个需求,如果态度比较好,一般业务同学都很愿意和你分享。通过与数据需求建立联系后,有空可以和业务一起吃吃饭,交流交流,会让你更清楚业务情况,这样你也更好的知道应该如何提供数据服务,谁需要用相关数据来干什么。“数据需求是理解业务问题与痛点,与业务伙伴建立沟通的桥梁”
经验分享:
在业务比较理解,数据比较熟悉后,我处理数据需求的时候,往往我会在理解完数据需求的基础,主动和业务做一次沟通,一般是说我们一起确定数据口径。然后对数据需求中的数据口径,时间范围作一个讨论,通过确定数据需求。也顺便了解一下业务。
很多同行会说,有时候很忙,没有时候确定。其实,如果你自己有理解清楚需求再加上沟通数据需求,对你后续数据需求处理效率,以及避免需求处理反工有很大帮助。
小观点viewpoint 如果你所有公司有非常多的各种临时需求,一方面:一般说明公司业务还在发展或者变化中,很需要数据来支持和帮助。另一方面:如果你不能很好的响应与处理需求,对你来说是个坏事,你会天天认为自己的工作就是在处理需求,天天都在写SQL代码,没有什么价值。
数据分析师在处理数据需求的同时,必然都是各种数据报表的需求。各个开发或者设计过报表开发的数据分析师,有没有思考过这些问题:
经验分享:
一个好的数据分析师,往往都有一颗“好奇心”。往往对任何事情都会有很多为什么?对一个数据背后,数据分析师和普通人的思维可能会不一样。同样看到某个报道上,某个城市人均月收入破8千,你的感觉是什么?好奇的数据分析师可以会问以下问题:
基于这些进一步的数据后,才能对这些数据背后的东西做判断。所以在设计报表的时候就要基于业务场景,来思考要用什么样的数据来帮助业务做出更正的判断。
数据报表设计
在设计报表的时候经验总结来看,可以不断问以几个问题,从而可以帮助更好的把数据报表设计好:
什么时候应该开发数据报表提供给业务团队使用。当业务提出要开发数据报表的时候,数据分析师应该有基于业务知识的基础上进行判断。正常应该在二种情况下比较适合开发数据报表:
经验分享:收到报表需求后,数据分析师应该先有判断。并不应该是收到数据需求后,立即就为开发数据报表做准备,多分析这个数据报表需求,从业务稳定性、数据需求频率等角度考虑。如果不开发成数据报表,可以提供其它方式满足业务。
小结
一个数据分析师,如果可以把数据报表设计好,数据需求处理好,对于业务来说,满足了业务基础的数据服务,为业务基于数据对业务异常的定位、监控。
当发现业务KPI数据指标不好,我们定位好问题在哪发生?接下来应该要回答的,解决怎么问题,怎么办?就需要我们开始针对具体的业务问题,和业务场景进行专项的数据分析。下一篇我们一起来探讨,如何开展一个数据分析。
如果您是以下几种情况之一:
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
尊敬的考生: 您好! 我们诚挚通知您,CDA Level III 考试大纲将于 2025 年 12 月 31 日实施重大更新,并正式启用,2026年3月考 ...
2025-12-31“字如其人”的传统认知,让不少“手残党”在需要签名的场景中倍感尴尬——商务签约时的签名歪歪扭扭,朋友聚会的签名墙不敢落笔 ...
2025-12-31在多元统计分析的因子分析中,“得分系数”是连接原始观测指标与潜在因子的关键纽带,其核心作用是将多个相关性较高的原始指标, ...
2025-12-31对CDA(Certified Data Analyst)数据分析师而言,高质量的数据是开展后续分析、挖掘业务价值的基础,而数据采集作为数据链路的 ...
2025-12-31在中介效应分析(或路径分析)中,间接效应是衡量“自变量通过中介变量影响因变量”这一间接路径强度与方向的核心指标。不同于直 ...
2025-12-30数据透视表是数据分析中高效汇总、多维度分析数据的核心工具,能快速将杂乱数据转化为结构化的汇总报表。在实际分析场景中,我们 ...
2025-12-30在金融投资、商业运营、用户增长等数据密集型领域,量化策略凭借“数据驱动、逻辑可验证、执行标准化”的优势,成为企业提升决策 ...
2025-12-30CDA(Certified Data Analyst),是在数字经济大背景和人工智能时代趋势下,源自中国,走向世界,面向全行业的专业技能认证,旨 ...
2025-12-29在数据分析领域,周期性是时间序列数据的重要特征之一——它指数据在一定时间间隔内重复出现的规律,广泛存在于经济、金融、气象 ...
2025-12-29数据分析师的核心价值在于将海量数据转化为可落地的商业洞察,而高效的工具则是实现这一价值的关键载体。从数据采集、清洗整理, ...
2025-12-29在金融、零售、互联网等数据密集型行业,量化策略已成为企业提升决策效率、挖掘商业价值的核心工具。CDA(Certified Data Analys ...
2025-12-29CDA中国官网是全国统一的数据分析师认证报名网站,由认证考试委员会与持证人会员、企业会员以及行业知名第三方机构共同合作,致 ...
2025-12-26在数字化转型浪潮下,审计行业正经历从“传统手工审计”向“大数据智能审计”的深刻变革。教育部发布的《大数据与审计专业教学标 ...
2025-12-26统计学作为数学的重要分支,是连接数据与决策的桥梁。随着数据规模的爆炸式增长和复杂问题的涌现,传统统计方法已难以应对高维、 ...
2025-12-26数字化浪潮席卷全球,数据已成为企业核心生产要素,“用数据说话、用数据决策”成为企业生存与发展的核心逻辑。在这一背景下,CD ...
2025-12-26箱线图(Box Plot)作为数据分布可视化的核心工具,凭借简洁的结构直观呈现数据的中位数、四分位数、异常值等关键信息,广泛应用 ...
2025-12-25在数据驱动决策的时代,基于历史数据进行精准预测已成为企业核心需求——无论是预测未来销售额、客户流失概率,还是产品需求趋势 ...
2025-12-25在数据驱动业务的实践中,CDA(Certified Data Analyst)数据分析师的核心工作,本质上是通过“指标”这一数据语言,解读业务现 ...
2025-12-25在金融行业的数字化转型进程中,SQL作为数据处理与分析的核心工具,贯穿于零售银行、证券交易、保险理赔、支付结算等全业务链条 ...
2025-12-24在数据分析领域,假设检验是验证“数据差异是否显著”的核心工具,而独立样本t检验与卡方检验则是其中最常用的两种方法。很多初 ...
2025-12-24