
作者 | 数据海洋
来源 | haiyangxinyong
一名数据分析师不管在什么行业,在什么类型的企业任职,把服务公司的业务流程、业务逻辑、业务与数据对应起来这是基础的基础。在这个前提下,通过我业务方的沟通与交流,你应该要了解的信息,在时间维度上,可能是未来1个月,3个月,6个月或者12个月:
了解信息后,以KPI具体数值的为例:数据分析师可以多问自己几个为什么,然后再和业务沟通你的理解,你才有可能真正理解KPI背后的逻辑与原因。业务包括:
很多数据分析师其实都不愿意或者认为去了解和理解这些内容不重要,或者感觉和自己做的事情无关。数据分析师从做的内容来说,可以分成以下几个层次,每次层次的内容和分析师所处的阶段和数据分析师资历有关系。
数据需求处理
所谓有数据需求,就是业务团队根据业务需要。向你提出的希望分析师能从数据库中提取的数据内容。例如:本月做了一个促销活动,想知道促销活动带来了多少新客、顾客,同时想看一下,老客户从过去某段时间内累计消费的频次分布。业务基于得到的数据进行活动总结,来分析这次活动是否达到预期。
在一些业务快速发展的企业,数据需求处理往往占据了数据分析师非常大的工作量。对于初级数据分析师来说,可能占据了他们80%左右的工作时间。
很多数据分析师发现,特别是初级数据分析师在工作一段时间后。天天都是拉数据,处理为完的数据需求;公司的大数据平台或者数据仓库建设不是那么完善,数据提取效率比较低。
有时候因为数据底层的问题,导致提取数据的时候,可能用的表不一样,导致数据取错误的数据。数据仓库底层往往表非常多,1千多张是很正常的。很多公司的数据开发/治理不是那么好,导致表的生命周期管理不是很好。经常对不常用的表可能会使用错误。
往往抱怨,数据分析师好像非常没有“技术”含量。但在我个人认为,这往往是最有“技术”含量的,数据需求往往是帮助一个数据分析师,去理解业务,理解业务痛点,和业务建立紧密关系的最重要的场景。
当我还是一个初级数据分析师的时候:
在处理前:
在收到业务数据需求的时候,我往往都会去思考,给自己提几个问题:
为什么要提这个需求?
业务中是谁真正会用这个数据?
要解决的问题是什么?
用这些数据能不能真正解决业务的问题?
在处理后:
当我给出数据需求的时候,一般我会把每个数据的口径说明清楚,对自己给出的数据做出检查。很多时候我会根据我的理解,再对这个需求提供多一些数据内容,帮助他可能要做进一步的数据分析。
对应数据需求的代码,我们做一下归档。往往很多时候,很多业务的数据需求都是会重复的或者相差不大,用写的代代码修改提取数据,速度要快很多。
在处理数据需求过程中,会和业务沟通确定一下数据口径,也一起问一下为什么会需要这个需求,如果态度比较好,一般业务同学都很愿意和你分享。通过与数据需求建立联系后,有空可以和业务一起吃吃饭,交流交流,会让你更清楚业务情况,这样你也更好的知道应该如何提供数据服务,谁需要用相关数据来干什么。“数据需求是理解业务问题与痛点,与业务伙伴建立沟通的桥梁”
经验分享:
在业务比较理解,数据比较熟悉后,我处理数据需求的时候,往往我会在理解完数据需求的基础,主动和业务做一次沟通,一般是说我们一起确定数据口径。然后对数据需求中的数据口径,时间范围作一个讨论,通过确定数据需求。也顺便了解一下业务。
很多同行会说,有时候很忙,没有时候确定。其实,如果你自己有理解清楚需求再加上沟通数据需求,对你后续数据需求处理效率,以及避免需求处理反工有很大帮助。
小观点viewpoint 如果你所有公司有非常多的各种临时需求,一方面:一般说明公司业务还在发展或者变化中,很需要数据来支持和帮助。另一方面:如果你不能很好的响应与处理需求,对你来说是个坏事,你会天天认为自己的工作就是在处理需求,天天都在写SQL代码,没有什么价值。
数据分析师在处理数据需求的同时,必然都是各种数据报表的需求。各个开发或者设计过报表开发的数据分析师,有没有思考过这些问题:
经验分享:
一个好的数据分析师,往往都有一颗“好奇心”。往往对任何事情都会有很多为什么?对一个数据背后,数据分析师和普通人的思维可能会不一样。同样看到某个报道上,某个城市人均月收入破8千,你的感觉是什么?好奇的数据分析师可以会问以下问题:
基于这些进一步的数据后,才能对这些数据背后的东西做判断。所以在设计报表的时候就要基于业务场景,来思考要用什么样的数据来帮助业务做出更正的判断。
数据报表设计
在设计报表的时候经验总结来看,可以不断问以几个问题,从而可以帮助更好的把数据报表设计好:
什么时候应该开发数据报表提供给业务团队使用。当业务提出要开发数据报表的时候,数据分析师应该有基于业务知识的基础上进行判断。正常应该在二种情况下比较适合开发数据报表:
经验分享:收到报表需求后,数据分析师应该先有判断。并不应该是收到数据需求后,立即就为开发数据报表做准备,多分析这个数据报表需求,从业务稳定性、数据需求频率等角度考虑。如果不开发成数据报表,可以提供其它方式满足业务。
小结
一个数据分析师,如果可以把数据报表设计好,数据需求处理好,对于业务来说,满足了业务基础的数据服务,为业务基于数据对业务异常的定位、监控。
当发现业务KPI数据指标不好,我们定位好问题在哪发生?接下来应该要回答的,解决怎么问题,怎么办?就需要我们开始针对具体的业务问题,和业务场景进行专项的数据分析。下一篇我们一起来探讨,如何开展一个数据分析。
如果您是以下几种情况之一:
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
PowerBI 累计曲线制作指南:从 DAX 度量到可视化落地 在业务数据分析中,“累计趋势” 是衡量业务进展的核心视角 —— 无论是 “ ...
2025-08-15Python 函数 return 多个数据:用法、实例与实战技巧 在 Python 编程中,函数是代码复用与逻辑封装的核心载体。多数场景下,我们 ...
2025-08-15CDA 数据分析师:引领商业数据分析体系构建,筑牢企业数据驱动根基 在数字化转型深化的今天,企业对数据的依赖已从 “零散分析” ...
2025-08-15随机森林中特征重要性(Feature Importance)排名解析 在机器学习领域,随机森林因其出色的预测性能和对高维数据的适应性,被广 ...
2025-08-14t 统计量为负数时的分布计算方法与解析 在统计学假设检验中,t 统计量是常用的重要指标,其分布特征直接影响着检验结果的判断。 ...
2025-08-14CDA 数据分析师与业务数据分析步骤 在当今数据驱动的商业世界中,数据分析已成为企业决策和发展的核心驱动力。CDA 数据分析师作 ...
2025-08-14前台流量与后台流量:数据链路中的双重镜像 在商业数据分析体系中,流量数据是洞察用户行为与系统效能的核心依据。前台流量与 ...
2025-08-13商业数据分析体系构建与 CDA 数据分析师的协同赋能 在企业数字化转型的浪潮中,商业数据分析已从 “可选工具” 升级为 “核 ...
2025-08-13解析 CDA 数据分析师:数据时代的价值挖掘者 在数字经济高速发展的今天,数据已成为企业核心资产,而将数据转化为商业价值的 ...
2025-08-13解析 response.text 与 response.content 的核心区别 在网络数据请求与处理的场景中,开发者经常需要从服务器返回的响应中提取数 ...
2025-08-12MySQL 统计连续每天数据:从业务需求到技术实现 在数据分析场景中,连续日期的数据统计是衡量业务连续性的重要手段 —— 无论是 ...
2025-08-12PyTorch 中 Shuffle 机制:数据打乱的艺术与实践 在深度学习模型训练过程中,数据的呈现顺序往往对模型性能有着微妙却关键的影响 ...
2025-08-12Pandas 多列条件筛选:从基础语法到实战应用 在数据分析工作中,基于多列条件筛选数据是高频需求。无论是提取满足特定业务规则的 ...
2025-08-12人工智能重塑 CDA 数据分析领域:从工具革新到能力重构 在数字经济浪潮与人工智能技术共振的 2025 年,数据分析行业正经历着前所 ...
2025-08-12游戏流水衰退率:计算方法与实践意义 在游戏行业中,流水(即游戏收入)是衡量一款游戏商业表现的核心指标之一。而游戏流水衰退 ...
2025-08-12CDA 一级:数据分析入门的基石 在当今数据驱动的时代,数据分析能力已成为职场中的一项重要技能。CDA(Certified Data Anal ...
2025-08-12破解游戏用户流失困局:从数据洞察到留存策略 在游戏行业竞争白热化的当下,用户流失率已成为衡量产品健康度的核心指标。一款游 ...
2025-08-11数据时代的黄金入场券:CDA 认证解锁职业新蓝海 一、万亿级市场需求下的数据分析人才缺口 在数字化转型浪潮中,数据已成为企业核 ...
2025-08-11DBeaver 实战:实现两个库表结构同步的高效路径 在数据库管理与开发工作中,保持不同环境(如开发库与生产库、主库与从库)的表 ...
2025-08-08t 检验与卡方检验:数据分析中的两大统计利器 在数据分析领域,统计检验是验证假设、挖掘数据规律的重要手段。其中,t 检验和卡 ...
2025-08-08