京公网安备 11010802034615号
经营许可证编号:京B2-20210330
作者 | Digvijay Upadhyay
编译 | 风车云马
大数据分析能够帮助企业的收入在短时间内翻一番。如果你希望在未来几年快速取得成功,就离不开数据的智能分析。这就是为什么几乎所有的跨国企业在其数据库中实施大数据分析的原因。
下面,我们来看看一些跨国企业是如何利用大数据的。本文主要涵盖以下主题:
使用大数据分析来定位客户
利用大数据,企业可以观察不同客户的消费和行为模式。企业收集的客户信息越多,就能识别出越多的行为和习惯。
在当今发达的商业世界和创新时代,企业几乎毫不费力地收集所需的所有客户信息。当然,直接的客户信息还远远不够,从根本上说,最重要的是需要一个好的数据分析方法来挖掘更有用的知识。
通过大数据分析技术筛选客户信息,企业能够跟踪目标客户的基本行为知识,从而保持客户基础。
利用大数据来解决广告问题,并提供营销策略
大数据分析可以帮助改变所有的商业活动。它不仅整合协调了客户需求,而且改变了企业的产品供应,并产生了不可思议的广告效果。
我们曾经不得不面对这赤裸裸的真相——企业耗资了数百万美元,而这些钱都花在了没有效益的广告上。这是什么原因呢?他们很有可能没有进行数据调研和分析。
利用大数据进行风险管理
特殊的形势和极其不安全的经营状况要求更好的风险管理。从根本上说,企业经营的危险之处,就在于潜在风险的任何投机行为。
如果企业想要保持效益,就有必要提前观察潜在的危险,并在危险发生之前加以控制。专家建议,风险管理要比你的业务有更多的保护措施。
大数据分析是产品开发和创新的驱动力
大量信息的背后是帮助企业改进产品和重新开发其项目。从根本上说,大数据已经变成了获取额外收入的途径。
在规划新产品和重组当前项目之前,企业首先要尽可能多地收集信息。每个流程都需要从客户的需求出发。
企业可以通过不同的渠道考虑客户的需求。此时,企业可以通过大数据分析技术来识别需求。
大数据在供应链管理中的应用
大数据为供应链系统提供了更加精确、清晰的洞察力。从根本上说,通过大量的信息调查,供应商可以摆脱以前所面临的限制。
在此之前,数据使用的是传统的企业管理框架和存储网络框架。这样容易出错,并且给供应商带来巨大的不幸。
目前基于大数据分析的方法,供应商能够做出更加准确的判断,这对于实现供应链管理至关重要。
一些跨国企业如何使用大数据分析的例子
1. 亚马逊(Amazon)
这家在线零售巨头获得了大量客户信息:姓名、地址、分期付款和帐户都记录在它的信息库中。同样,亚马逊利用这些数据来改善客户关系,这是许多大数据用户所忽视的一个领域。
无论何时你联系亚马逊客服人员,不要惊讶于对面的工作人员已经收到了你的相关数据。这些数据是为了提供一个更快的,更好的客户服务。
2. 美国运通(American Express)
美国运通企业正在利用大数据来分析和预测购物者的行为。通过了解真实的消费及其100多个影响因素构建模型,而不是基于过去的传统商业模型。
目前的模型能够做出精确的预测。美国运通已经保证在其澳大利亚市场,会在4个月内偿还24%的债务记录。
3. 德豪审计所(BDO)
国家审计所BDO使用大数据分析技术来识别其中的敲诈和勒索。最初使用个人信息进行咨询,包括开各种会议并花费长时间的劳动。
BDO咨询主管基尔斯蒂•蒂尔南(Kirstie Tiernan)指出,现在他们可以将数千家商户的数量削减至12家,然后只对违规信息进行审计。这种方式很快就得到了普遍的承认。
4. 美国第一资本投资国际集团(Capital One)
市场营销是最被广泛认可的大数据应用之一,而Capital>通过研究社会经济和客户资金管理方式,Capital One为客户提供不同的投资机会,从而扩大了兑换率。
5. 通用电气(GE)
通用电气正在利用燃气机和飞机发动机等设备上的传感器信息,来改善工况和提升质量。生成的报告随后被传递到GE测试组,以增强设备和提高工作效率。
该企业估计,这些信息可以使美国的工作效率提高1.5%,在20年的时间内,这些信息能够节省一大笔资金,用于将普通国民的工资提高30%。
6. 奈飞公司(Netflix)
娱乐流媒体服务有很多丰富的内容,为全球客户提供有价值的知识。Netflix利用这些信息来定制独特的节目,这些内容吸引了所有人的兴趣。
例如,亚当•桑德勒(Adam Sandler)最近在美国和英国的展映中表现出不受欢迎的样子,但Netflix在2015年拍摄了以他为主角的四部新电影,并且是以他过去的工作为背景,在拉美引起反响。
结论
大数据分析能够给你带来很多好处。这些是跨国企业使用大数据的一些基本方式。希望对你有所帮助。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
数据分析的核心价值在于用数据驱动决策,而指标作为数据的“载体”,其选取的合理性直接决定分析结果的有效性。选对指标能精准定 ...
2026-01-23在MySQL查询编写中,我们习惯按“SELECT → FROM → WHERE → ORDER BY”的语法顺序组织语句,直觉上认为代码顺序即执行顺序。但 ...
2026-01-23数字化转型已从企业“可选项”升级为“必答题”,其核心本质是通过数据驱动业务重构、流程优化与模式创新,实现从传统运营向智能 ...
2026-01-23CDA持证人已遍布在世界范围各行各业,包括世界500强企业、顶尖科技独角兽、大型金融机构、国企事业单位、国家行政机关等等,“CDA数据分析师”人才队伍遵守着CDA职业道德准则,发挥着专业技能,已成为支撑科技发展的核心力量。 ...
2026-01-22在数字化时代,企业积累的海量数据如同散落的珍珠,而数据模型就是串联这些珍珠的线——它并非简单的数据集合,而是对现实业务场 ...
2026-01-22在数字化运营场景中,用户每一次点击、浏览、交互都构成了行为轨迹,这些轨迹交织成海量的用户行为路径。但并非所有路径都具备业 ...
2026-01-22在数字化时代,企业数据资产的价值持续攀升,数据安全已从“合规底线”升级为“生存红线”。企业数据安全管理方法论以“战略引领 ...
2026-01-22在SQL数据分析与业务查询中,日期数据是高频处理对象——订单创建时间、用户注册日期、数据统计周期等场景,都需对日期进行格式 ...
2026-01-21在实际业务数据分析中,单一数据表往往无法满足需求——用户信息存储在用户表、消费记录在订单表、商品详情在商品表,想要挖掘“ ...
2026-01-21在数字化转型浪潮中,企业数据已从“辅助资源”升级为“核心资产”,而高效的数据管理则是释放数据价值的前提。企业数据管理方法 ...
2026-01-21在数字化商业环境中,数据已成为企业优化运营、抢占市场、规避风险的核心资产。但商业数据分析绝非“堆砌数据、生成报表”的简单 ...
2026-01-20定量报告的核心价值是传递数据洞察,但密密麻麻的表格、复杂的计算公式、晦涩的数值罗列,往往让读者望而却步,导致核心信息被淹 ...
2026-01-20在CDA(Certified Data Analyst)数据分析师的工作场景中,“精准分类与回归预测”是高频核心需求——比如预测用户是否流失、判 ...
2026-01-20在建筑工程造价工作中,清单汇总分类是核心环节之一,尤其是针对楼梯、楼梯间这类包含多个分项工程(如混凝土浇筑、钢筋制作、扶 ...
2026-01-19数据清洗是数据分析的“前置必修课”,其核心目标是剔除无效信息、修正错误数据,让原始数据具备准确性、一致性与可用性。在实际 ...
2026-01-19在CDA(Certified Data Analyst)数据分析师的日常工作中,常面临“无标签高维数据难以归类、群体规律模糊”的痛点——比如海量 ...
2026-01-19在数据仓库与数据分析体系中,维度表与事实表是构建结构化数据模型的核心组件,二者如同“骨架”与“血肉”,协同支撑起各类业务 ...
2026-01-16在游戏行业“存量竞争”的当下,玩家留存率直接决定游戏的生命周期与商业价值。一款游戏即便拥有出色的画面与玩法,若无法精准识 ...
2026-01-16为配合CDA考试中心的 2025 版 CDA Level III 认证新大纲落地,CDA 网校正式推出新大纲更新后的第一套官方模拟题。该模拟题严格遵 ...
2026-01-16在数据驱动决策的时代,数据分析已成为企业运营、产品优化、业务增长的核心工具。但实际工作中,很多数据分析项目看似流程完整, ...
2026-01-15