
作者 | 刘顺祥
来源 | 数据分析1480
在《Python数据清洗(一):类型转换和冗余数据删除》和《Python数据清洗(二):缺失值识别与处理》文中已经讲解了有关数据中重复观测和缺失值的识别与处理,在本节中将分享异常值的判断和处理方法。
异常值也称为离群点,就是那些远离绝大多数样本点的特殊群体,通常这样的数据点在数据集中都表现出不合理的特性。如果忽视这些异常值,在某些建模场景下就会导致结论的错误(如线性回归模型、K均值聚类等),所以在数据的探索过程中,有必要识别出这些异常值并处理好它们。
异常值的识别
通常,异常值的识别可以借助于图形法(如箱线图、正态分布图)和建模法(如线性回归、聚类算法、K近邻算法),在本期内容中,将分享两种图形法,在下一期将分享基于模型识别异常值的方法。
箱线图法
箱线图技术实际上就是利用数据的分位数识别其中的异常点,该图形属于典型的统计图形,在学术界和工业界都得到广泛的应用。箱线图的形状特征如下图所示:
图中的下四分位数指的是数据的25%分位点所对应的值(Q1);中位数即为数据的50%分位点所对应的值(Q2);上四分位数则为数据的75%分位点所对应的值(Q3);上须的计算公式为Q3+1.5(Q3-Q1);下须的计算公式为Q1-1.5(Q3-Q1)。其中,Q3-Q1表示四分位差。如果采用箱线图识别异常值,其判断标准是,当变量的数据值大于箱线图的上须或者小于箱线图的下须时,就可以认为这样的数据点为异常点。
所以,基于上方的箱线图,可以定义某个数值型变量中的异常点和极端异常点,它们的判断表达式如下表所示:
在Python中可以使用matplotlib模块实现数据的可视化,其中boxplot函数就是用于绘制箱线图的。下面以1700年至1988年太阳黑子数量的数据为例,利用箱线图法识别数据中的异常点和极端异常点。具体的代码如下:
# 导入第三方模块 import pandas as pd import matplotlib.pyplot as plt # 导入数据 sunspots = pd.read_csv(r'C:\Users\Administrator\Desktop\sunspots.csv') # 绘制箱线图(1.5倍的四分位差,如需绘制3倍的四分位差,只需调整whis参数) plt.boxplot(x = sunspots.counts, # 指定绘制箱线图的数据 whis = 1.5, # 指定1.5倍的四分位差 widths = 0.7, # 指定箱线图的宽度为0.8 patch_artist = True, # 指定需要填充箱体颜色 showmeans = True, # 指定需要显示均值 boxprops = {'facecolor':'steelblue'}, # 指定箱体的填充色为铁蓝色 # 指定异常点的填充色、边框色和大小 flierprops = {'markerfacecolor':'red', 'markeredgecolor':'red', 'markersize':4}, # 指定均值点的标记符号(菱形)、填充色和大小 meanprops = {'marker':'D','markerfacecolor':'black', 'markersize':4}, medianprops = {'linestyle':'--','color':'orange'}, # 指定中位数的标记符号(虚线)和颜色 labels = [''] # 去除箱线图的x轴刻度值 ) # 显示图形 plt.show()
如上图所示,利用matplotlib子模块pyplot中的boxplot函数可以非常方便地绘制箱线图,其中左图的上下须设定为1.5倍的四分位差,右图的上下须设定为3倍的四分位差。从左图可知,发现数据集中至少存在5个异常点,它们均在上须之上;而在右图中并没有显示极端异常点。
通过上图可以直观地发现数据中是否存在异常点或极端异常点,但无法得知哪些观测为异常点,以及这些异常点的具体数值。为解决该问题,读者可以通过下方的代码实现查询:
# 计算下四分位数和上四分位 Q1 = sunspots.counts.quantile(q = 0.25) Q3 = sunspots.counts.quantile(q = 0.75) # 基于1.5倍的四分位差计算上下须对应的值 low_whisker = Q1 - 1.5*(Q3 - Q1) up_whisker = Q3 + 1.5*(Q3 - Q1) # 寻找异常点 sunspots.counts[(sunspots.counts > up_whisker) | (sunspots.counts < low_whisker)]
正态分布图法
根据正态分布的定义可知,数据点落在偏离均值正负1倍标准差(即sigma值)内的概率为68.2%;数据点落在偏离均值正负2倍标准差内的概率为95.4%;数据点落在偏离均值正负3倍标准差内的概率为99.6%。
所以,换个角度思考上文提到的概率值,如果数据点落在偏离均值正负2倍标准差之外的概率就不足5%,它属于小概率事件,即认为这样的数据点为异常点。同理,如果数据点落在偏离均值正负3倍标准差之外的概率将会更小,可以认为这些数据点为极端异常点。为使读者直观地理解文中提到的概率值,可以查看标准正态分布的概率密度图,如下图所示:
进一步,基于上图的结论,可以按照下表中的判断条件,识别出数值型变量的异常点和极端异常点,如下表所示:
利用正态分布的知识点,结合pyplot子模块中的plot函数绘制折线图和散点图,并借助于两条水平参考线识别异常值或极端异常值。
接下来以某公司的支付转化率数据为例,使用正态分布的特性识别数据集中的异常点和极端异常点,该数据呈现的是2017年第三季度每天的支付转化率。我们利用如上介绍的plot函数,识别数据中可能存在的异常点或极端异常点。具体代码如下:
# 读入外部数据 pay_ratio = pd.read_excel(r'C:\Users\Administrator\Desktop\pay_ratio.xlsx') # 绘制单条折线图,并在折线图的基础上添加点图 plt.plot(pay_ratio.date, # x轴数据 pay_ratio.ratio, # y轴数据 linestyle = '-', # 设置折线类型 linewidth = 2, # 设置线条宽度 color = 'steelblue', # 设置折线颜色 marker = 'o', # 往折线图中添加圆点 markersize = 4, # 设置点的大小 markeredgecolor='black', # 设置点的边框色 markerfacecolor='black') # 设置点的填充色 # 显示图形 plt.show() # 添加上下界的水平参考线(便于判断异常点,如下判断极端异常点,只需将2改为3) plt.axhline(y = pay_ratio.ratio.mean() - 2* pay_ratio.ratio.std(), linestyle = '--', color = 'gray') plt.axhline(y = pay_ratio.ratio.mean() + 2* pay_ratio.ratio.std(), linestyle = '--', color = 'gray') # 导入模块,用于日期刻度的修改(因为默认格式下的日期刻度标签并不是很友好) import matplotlib as mpl # 获取图的坐标信息 ax = plt.gca() # 设置日期的显示格式 date_format = mpl.dates.DateFormatter("%m-%d") ax.xaxis.set_major_formatter(date_format) # 设置x轴每个刻度的间隔天数 xlocator = mpl.ticker.MultipleLocator(7) ax.xaxis.set_major_locator(xlocator) # 为了避免x轴刻度标签的紧凑,将刻度标签旋转45度 plt.xticks(rotation=45)
如上图所示,左图中的两条水平线是偏离均值正负2倍标准差的参考线,目测有6个样本点落在参考线之外,可以判定它们属于异常点;而对于右图中偏离均值正负3倍标准差的参考线来说,仅有1个样本点落在参考线之外,即说明该样本点就是2017年第三季度的唯一极端异常点。
同理,也可以借助于下面的代码,查询出异常点所对应的水流量:
# 计算判断异常点和极端异常点的临界值 outlier_ll = pay_ratio.ratio.mean() - 2* pay_ratio.ratio.std() outlier_ul = pay_ratio.ratio.mean() + 2* pay_ratio.ratio.std() extreme_outlier_ll = pay_ratio.ratio.mean() - 3* pay_ratio.ratio.std() extreme_outlier_ul = pay_ratio.ratio.mean() + 3* pay_ratio.ratio.std() # 寻找异常点 pay_ratio.loc[(pay_ratio.ratio > outlier_ul) | (pay_ratio.ratio < outlier_ll), ['date','ratio']] # 寻找极端异常点 pay_ratio.loc[(pay_ratio.ratio > extreme_outlier_ul) | (pay_ratio.ratio < extreme_outlier_ll), ['date','ratio']]
异常点
极端异常点
尽管基于箱线图的分位数法和基于正态分布的参考线法都可以实现异常值和极端异常值的识别,但是在实际应用中,需要有针对性的选择。如果待判断的变量近似服从正态分布,建议选择正态分布的参考线法识别异常点,否则使用分位数法识别异常点。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22在企业数据分析中,“数据孤岛” 是制约分析深度的核心瓶颈 —— 用户数据散落在注册系统、APP 日志、客服记录中,订单数据分散 ...
2025-10-22在神经网络设计中,“隐藏层个数” 是决定模型能力的关键参数 —— 太少会导致 “欠拟合”(模型无法捕捉复杂数据规律,如用单隐 ...
2025-10-21在特征工程流程中,“单变量筛选” 是承上启下的关键步骤 —— 它通过分析单个特征与目标变量的关联强度,剔除无意义、冗余的特 ...
2025-10-21在数据分析全流程中,“数据读取” 常被误解为 “简单的文件打开”—— 双击 Excel、执行基础 SQL 查询即可完成。但对 CDA(Cert ...
2025-10-21在实际业务数据分析中,我们遇到的大多数数据并非理想的正态分布 —— 电商平台的用户消费金额(少数用户单次消费上万元,多数集 ...
2025-10-20在数字化交互中,用户的每一次操作 —— 从电商平台的 “浏览商品→加入购物车→查看评价→放弃下单”,到内容 APP 的 “点击短 ...
2025-10-20在数据分析的全流程中,“数据采集” 是最基础也最关键的环节 —— 如同烹饪前需备好新鲜食材,若采集的数据不完整、不准确或不 ...
2025-10-20在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15