
作者 | Francois Chollet
编译 | CDA数据分析师
A ten-minute introduction to sequence-to-sequence learning in Keras
什么是顺序学习?
序列到序列学习(Seq2Seq)是关于将模型从一个域(例如英语中的句子)转换为另一域(例如将相同句子翻译为法语的序列)的训练模型。
“猫坐在垫子上” -> [ Seq2Seq 模型] -> “在小吃中聊天
这可用于机器翻译或免费问答(在给定自然语言问题的情况下生成自然语言答案)-通常,它可在需要生成文本的任何时间使用。
有多种处理此任务的方法,可以使用RNN或使用一维卷积网络。在这里,我们将重点介绍RNN。
普通情况:输入和输出序列的长度相同
当输入序列和输出序列的长度相同时,您可以简单地使用Keras LSTM或GRU层(或其堆栈)来实现此类模型。在此示例脚本 中就是这种情况, 该脚本显示了如何教RNN学习加编码为字符串的数字:
该方法的一个警告是,它假定可以生成target[...t]给定input[...t]。在某些情况下(例如添加数字字符串),该方法有效,但在大多数用例中,则无效。在一般情况下,有关整个输入序列的信息是必需的,以便开始生成目标序列。
一般情况:规范序列间
在一般情况下,输入序列和输出序列具有不同的长度(例如,机器翻译),并且需要整个输入序列才能开始预测目标。这需要更高级的设置,这是人们在没有其他上下文的情况下提到“序列模型的序列”时通常所指的东西。运作方式如下:
RNN层(或其堆栈)充当“编码器”:它处理输入序列并返回其自己的内部状态。请注意,我们放弃了编码器RNN的输出,仅恢复 了状态。在下一步中,此状态将用作解码器的“上下文”或“条件”。
另一个RNN层(或其堆栈)充当“解码器”:在给定目标序列的先前字符的情况下,对其进行训练以预测目标序列的下一个字符。具体而言,它经过训练以将目标序列变成相同序列,但在将来会偏移一个时间步,在这种情况下,该训练过程称为“教师强迫”。重要的是,编码器使用来自编码器的状态向量作为初始状态,这就是解码器如何获取有关应该生成的信息的方式。有效地,解码器学会产生targets[t+1...] 给定的targets[...t],调节所述输入序列。
在推断模式下,即当我们想解码未知的输入序列时,我们会经历一个略有不同的过程:
同样的过程也可以用于训练Seq2Seq网络,而无需 “教师强制”,即通过将解码器的预测重新注入到解码器中。
一个Keras例子
因为训练过程和推理过程(解码句子)有很大的不同,所以我们对两者使用不同的模型,尽管它们都利用相同的内部层。
这是我们的训练模型。它利用Keras RNN的三个关键功能:
return_state构造器参数,配置RNN层返回一个列表,其中,第一项是输出与下一个条目是内部RNN状态。这用于恢复编码器的状态。
inital_state呼叫参数,指定一个RNN的初始状态(S)。这用于将编码器状态作为初始状态传递给解码器。
return_sequences构造函数的参数,配置RNN返回其输出全序列(而不只是最后的输出,其默认行为)。在解码器中使用。
from keras.models import Model from keras.layers import Input, LSTM, Dense # Define an input sequence and process it. encoder_inputs = Input(shape=(None, num_encoder_tokens)) encoder = LSTM(latent_dim, return_state=True) encoder_outputs, state_h, state_c = encoder(encoder_inputs) # We discard `encoder_outputs` and only keep the states. encoder_states = [state_h, state_c] # Set up the decoder, using `encoder_states` as initial state. decoder_inputs = Input(shape=(None, num_decoder_tokens)) # We set up our decoder to return full output sequences, # and to return internal states as well. We don't use the # return states in the training model, but we will use them in inference. decoder_lstm = LSTM(latent_dim, return_sequences=True, return_state=True) decoder_outputs, _, _ = decoder_lstm(decoder_inputs, initial_state=encoder_states) decoder_dense = Dense(num_decoder_tokens, activation='softmax') decoder_outputs = decoder_dense(decoder_outputs) # Define the model that will turn # `encoder_input_data` & `decoder_input_data` into `decoder_target_data` model = Model([encoder_inputs, decoder_inputs], decoder_outputs)
我们分两行训练我们的模型,同时监视20%的保留样本中的损失。
# Run training model.compile(optimizer='rmsprop', loss='categorical_crossentropy') model.fit([encoder_input_data, decoder_input_data], decoder_target_data, batch_size=batch_size, epochs=epochs, validation_split=0.2)
在MacBook CPU上运行大约一个小时后,我们就可以进行推断了。为了解码测试语句,我们将反复:
这是我们的推理设置:
encoder_model = Model(encoder_inputs, encoder_states) decoder_state_input_h = Input(shape=(latent_dim,)) decoder_state_input_c = Input(shape=(latent_dim,)) decoder_states_inputs = [decoder_state_input_h, decoder_state_input_c] decoder_outputs, state_h, state_c = decoder_lstm( decoder_inputs, initial_state=decoder_states_inputs) decoder_states = [state_h, state_c] decoder_outputs = decoder_dense(decoder_outputs) decoder_model = Model( [decoder_inputs] + decoder_states_inputs, [decoder_outputs] + decoder_states)
我们使用它来实现上述推理循环:
def decode_sequence(input_seq): # Encode the input as state vectors. states_value = encoder_model.predict(input_seq) # Generate empty target sequence of length 1. target_seq = np.zeros((1, 1, num_decoder_tokens)) # Populate the first character of target sequence with the start character. target_seq[0, 0, target_token_index['\t']] = 1. # Sampling loop for a batch of sequences # (to simplify, here we assume a batch of size 1). stop_condition = False decoded_sentence = '' while not stop_condition: output_tokens, h, c = decoder_model.predict( [target_seq] + states_value) # Sample a token sampled_token_index = np.argmax(output_tokens[0, -1, :]) sampled_char = reverse_target_char_index[sampled_token_index] decoded_sentence += sampled_char # Exit condition: either hit max length # or find stop character. if (sampled_char == '\n' or len(decoded_sentence) > max_decoder_seq_length): stop_condition = True # Update the target sequence (of length 1). target_seq = np.zeros((1, 1, num_decoder_tokens)) target_seq[0, 0, sampled_token_index] = 1. # Update states states_value = [h, c] return decoded_sentence
我们得到了一些不错的结果-毫不奇怪,因为我们正在解码从训练测试中提取的样本
Input sentence: Be nice. Decoded sentence: Soyez gentil ! - Input sentence: Drop it! Decoded sentence: Laissez tomber ! - Input sentence: Get out! Decoded sentence: Sortez !
到此,我们结束了对Keras中序列到序列模型的十分钟介绍。提醒:此脚本的完整代码可以在GitHub上找到。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04CDA 数据分析师:驾驭数据范式,释放数据价值 在数字化转型浪潮席卷全球的当下,数据已成为企业核心生产要素。而 CDA(Certified ...
2025-09-04K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03CDA 数据分析师与数据分析:解锁数据价值的关键 在数字经济高速发展的今天,数据已成为企业核心资产与社会发展的重要驱动力。无 ...
2025-09-03解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02CDA 数据分析师:助力企业破解数据需求与数据分析需求难题 在数字化浪潮席卷全球的当下,数据已成为企业核心战略资产。无论是市 ...
2025-09-02Power BI 度量值实战:基于每月收入与税金占比计算累计税金分摊金额 在企业财务分析中,税金分摊是成本核算与利润统计的核心环节 ...
2025-09-01巧用 ALTER TABLE rent ADD INDEX:租房系统数据库性能优化实践 在租房管理系统中,rent表是核心业务表之一,通常存储租赁订单信 ...
2025-09-01CDA 数据分析师:企业数字化转型的核心引擎 —— 从能力落地到价值跃迁 当数字化转型从 “选择题” 变为企业生存的 “必答题”, ...
2025-09-01数据清洗工具全景指南:从入门到进阶的实操路径 在数据驱动决策的链条中,“数据清洗” 是决定后续分析与建模有效性的 “第一道 ...
2025-08-29机器学习中的参数优化:以预测结果为核心的闭环调优路径 在机器学习模型落地中,“参数” 是连接 “数据” 与 “预测结果” 的关 ...
2025-08-29CDA 数据分析与量化策略分析流程:协同落地数据驱动价值 在数据驱动决策的实践中,“流程” 是确保价值落地的核心骨架 ——CDA ...
2025-08-29CDA含金量分析 在数字经济与人工智能深度融合的时代,数据驱动决策已成为企业核心竞争力的关键要素。CDA(Certified Data Analys ...
2025-08-28CDA认证:数据时代的职业通行证 当海通证券的交易大厅里闪烁的屏幕实时跳动着市场数据,当苏州银行的数字金融部连夜部署新的风控 ...
2025-08-28