京公网安备 11010802034615号
经营许可证编号:京B2-20210330
作者 | Francois Chollet
编译 | CDA数据分析师
A ten-minute introduction to sequence-to-sequence learning in Keras
什么是顺序学习?
序列到序列学习(Seq2Seq)是关于将模型从一个域(例如英语中的句子)转换为另一域(例如将相同句子翻译为法语的序列)的训练模型。
“猫坐在垫子上” -> [ Seq2Seq 模型] -> “在小吃中聊天
这可用于机器翻译或免费问答(在给定自然语言问题的情况下生成自然语言答案)-通常,它可在需要生成文本的任何时间使用。
有多种处理此任务的方法,可以使用RNN或使用一维卷积网络。在这里,我们将重点介绍RNN。
普通情况:输入和输出序列的长度相同
当输入序列和输出序列的长度相同时,您可以简单地使用Keras LSTM或GRU层(或其堆栈)来实现此类模型。在此示例脚本 中就是这种情况, 该脚本显示了如何教RNN学习加编码为字符串的数字:
该方法的一个警告是,它假定可以生成target[...t]给定input[...t]。在某些情况下(例如添加数字字符串),该方法有效,但在大多数用例中,则无效。在一般情况下,有关整个输入序列的信息是必需的,以便开始生成目标序列。
一般情况:规范序列间
在一般情况下,输入序列和输出序列具有不同的长度(例如,机器翻译),并且需要整个输入序列才能开始预测目标。这需要更高级的设置,这是人们在没有其他上下文的情况下提到“序列模型的序列”时通常所指的东西。运作方式如下:
RNN层(或其堆栈)充当“编码器”:它处理输入序列并返回其自己的内部状态。请注意,我们放弃了编码器RNN的输出,仅恢复 了状态。在下一步中,此状态将用作解码器的“上下文”或“条件”。
另一个RNN层(或其堆栈)充当“解码器”:在给定目标序列的先前字符的情况下,对其进行训练以预测目标序列的下一个字符。具体而言,它经过训练以将目标序列变成相同序列,但在将来会偏移一个时间步,在这种情况下,该训练过程称为“教师强迫”。重要的是,编码器使用来自编码器的状态向量作为初始状态,这就是解码器如何获取有关应该生成的信息的方式。有效地,解码器学会产生targets[t+1...] 给定的targets[...t],调节所述输入序列。
在推断模式下,即当我们想解码未知的输入序列时,我们会经历一个略有不同的过程:
同样的过程也可以用于训练Seq2Seq网络,而无需 “教师强制”,即通过将解码器的预测重新注入到解码器中。
一个Keras例子
因为训练过程和推理过程(解码句子)有很大的不同,所以我们对两者使用不同的模型,尽管它们都利用相同的内部层。
这是我们的训练模型。它利用Keras RNN的三个关键功能:
return_state构造器参数,配置RNN层返回一个列表,其中,第一项是输出与下一个条目是内部RNN状态。这用于恢复编码器的状态。
inital_state呼叫参数,指定一个RNN的初始状态(S)。这用于将编码器状态作为初始状态传递给解码器。
return_sequences构造函数的参数,配置RNN返回其输出全序列(而不只是最后的输出,其默认行为)。在解码器中使用。
from keras.models import Model from keras.layers import Input, LSTM, Dense # Define an input sequence and process it. encoder_inputs = Input(shape=(None, num_encoder_tokens)) encoder = LSTM(latent_dim, return_state=True) encoder_outputs, state_h, state_c = encoder(encoder_inputs) # We discard `encoder_outputs` and only keep the states. encoder_states = [state_h, state_c] # Set up the decoder, using `encoder_states` as initial state. decoder_inputs = Input(shape=(None, num_decoder_tokens)) # We set up our decoder to return full output sequences, # and to return internal states as well. We don't use the # return states in the training model, but we will use them in inference. decoder_lstm = LSTM(latent_dim, return_sequences=True, return_state=True) decoder_outputs, _, _ = decoder_lstm(decoder_inputs, initial_state=encoder_states) decoder_dense = Dense(num_decoder_tokens, activation='softmax') decoder_outputs = decoder_dense(decoder_outputs) # Define the model that will turn # `encoder_input_data` & `decoder_input_data` into `decoder_target_data` model = Model([encoder_inputs, decoder_inputs], decoder_outputs)
我们分两行训练我们的模型,同时监视20%的保留样本中的损失。
# Run training model.compile(optimizer='rmsprop', loss='categorical_crossentropy') model.fit([encoder_input_data, decoder_input_data], decoder_target_data, batch_size=batch_size, epochs=epochs, validation_split=0.2)
在MacBook CPU上运行大约一个小时后,我们就可以进行推断了。为了解码测试语句,我们将反复:
这是我们的推理设置:
encoder_model = Model(encoder_inputs, encoder_states) decoder_state_input_h = Input(shape=(latent_dim,)) decoder_state_input_c = Input(shape=(latent_dim,)) decoder_states_inputs = [decoder_state_input_h, decoder_state_input_c] decoder_outputs, state_h, state_c = decoder_lstm( decoder_inputs, initial_state=decoder_states_inputs) decoder_states = [state_h, state_c] decoder_outputs = decoder_dense(decoder_outputs) decoder_model = Model( [decoder_inputs] + decoder_states_inputs, [decoder_outputs] + decoder_states)
我们使用它来实现上述推理循环:
def decode_sequence(input_seq): # Encode the input as state vectors. states_value = encoder_model.predict(input_seq) # Generate empty target sequence of length 1. target_seq = np.zeros((1, 1, num_decoder_tokens)) # Populate the first character of target sequence with the start character. target_seq[0, 0, target_token_index['\t']] = 1. # Sampling loop for a batch of sequences # (to simplify, here we assume a batch of size 1). stop_condition = False decoded_sentence = '' while not stop_condition: output_tokens, h, c = decoder_model.predict( [target_seq] + states_value) # Sample a token sampled_token_index = np.argmax(output_tokens[0, -1, :]) sampled_char = reverse_target_char_index[sampled_token_index] decoded_sentence += sampled_char # Exit condition: either hit max length # or find stop character. if (sampled_char == '\n' or len(decoded_sentence) > max_decoder_seq_length): stop_condition = True # Update the target sequence (of length 1). target_seq = np.zeros((1, 1, num_decoder_tokens)) target_seq[0, 0, sampled_token_index] = 1. # Update states states_value = [h, c] return decoded_sentence
我们得到了一些不错的结果-毫不奇怪,因为我们正在解码从训练测试中提取的样本
Input sentence: Be nice. Decoded sentence: Soyez gentil ! - Input sentence: Drop it! Decoded sentence: Laissez tomber ! - Input sentence: Get out! Decoded sentence: Sortez !
到此,我们结束了对Keras中序列到序列模型的十分钟介绍。提醒:此脚本的完整代码可以在GitHub上找到。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01在时间序列预测任务中,LSTM(长短期记忆网络)凭借对时序依赖关系的捕捉能力成为主流模型。但很多开发者在实操中会遇到困惑:用 ...
2025-12-01引言:数据时代的“透视镜”与“掘金者” 在数字经济浪潮下,数据已成为企业决策的核心资产,而CDA数据分析师正是挖掘数据价值的 ...
2025-12-01数据分析师的日常,常始于一堆“毫无章法”的数据点:电商后台导出的零散订单记录、APP埋点收集的无序用户行为日志、传感器实时 ...
2025-11-28在MySQL数据库运维中,“query end”是查询执行生命周期的收尾阶段,理论上耗时极短——主要完成结果集封装、资源释放、事务状态 ...
2025-11-28在CDA(Certified Data Analyst)数据分析师的工具包中,透视分析方法是处理表结构数据的“瑞士军刀”——无需复杂代码,仅通过 ...
2025-11-28在统计分析中,数据的分布形态是决定“用什么方法分析、信什么结果”的底层逻辑——它如同数据的“性格”,直接影响着描述统计的 ...
2025-11-27在电商订单查询、用户信息导出等业务场景中,技术人员常面临一个选择:是一次性查询500条数据,还是分5次每次查询100条?这个问 ...
2025-11-27