基于大数据分析的异常检测方法及其思路实例 1 概述 随着人类社会信息化程度的不断深入,信息系统产生的数据也在呈几何级数增长。对这些数据的深入分析可以得到很多有价值的信息。由于数据量太大以及数据属性 ...
2017-11-05统计学方法与数据分析学习笔记1 用于质量改进和再造工程的统计工具、技术和方法: 直方图 数值描述量(均值、标准差、比例等) 散点图 线图(在散点图中用线连接各点) 控制图:(样本均值 ...
2017-11-04
大数据和BI商业智能有何区别?有何相关 大数据 ≠BI商业智能,大数据也不是传统商业智能的简单升级。 1、大数据和BI两者的区别 BI(BusinessIntelligence)即商业智能,它是企业数据化管理的一整套的方案, ...
2017-11-04
结构思维—用结构化思考让数据分析到达问题的底层 对数据分析而言,不仅仅是直接回答问题,同时还需要针对问题,不断去探求,不断去深入。当探求问题的时候,可以用到图表可以用到统计,不过图表和统计的 ...
2017-11-04
如何搭建企业报表管理系统 进入21世纪信息化时代,我们的生活、工作都发生了极大的变化,企业的工作模式亦是如此,从前,领导想了解企业的经营情况都是通过手工制作的excel表格,而现在,众多企业 ...
2017-11-04
数据分析方法(一):对比与对标 对比是数据分析最基本的方法,通过对比识别数据差异。但是对比有得失。在分析过程中,对比得当可获得精准结论,但对比分析也存在陷阱,比如某产品近期销售数据在下滑,想 ...
2017-11-04举例简单讲解Python中的数据存储模块shelve的用法 shelve类似于一个key-value数据库,可以很方便的用来保存Python的内存对象,其内部使用pickle来序列化数据,简单来说,使用者可以将一个列表、字典、或者用户 ...
2017-11-03
SPSS复杂样本:复杂样本统计过程 一、复杂样本频率(分析-复杂抽样-频率) “复杂样本频率”过程可以为所选变量生成频率表并显示单变量统计。您还可以按子组请求统计量,子组由一个或多个分类变量 ...
2017-11-03
大数据时代 | 数据分析方法及理论详解 1 数据分析前,我们需要思考 像一场战役的总指挥影响着整个战役的胜败一样,数据分析师的思想对于整体分析思路,甚至分析结果都有着关键性的作用。 2 分析问题和解 ...
2017-11-03单因素方差分析(aov)-R版本 R版本的方差分析 #做方差分析有三个假设,需要提前进行检验。1.每个处理效应和随机误差是可加的。2.正态独立性,检验误差应该是正态分布的。3.方差齐次性。水平间的方差应该相等 ...
2017-11-03
SPSS回归分析:两阶最小二乘法 一、两阶最小二乘法(分析-回归-两阶最小二乘法) 标准线性回归模型假设因变量中的误差与自变量不相关。如果不是这种情况(例如,变量间的关系是双向的),则使用普 ...
2017-11-02
SPSS分类分析:决策树 一、决策树(分析-分类-决策树) “决策树”过程创建基于树的分类模型。它将个案分为若干组,或根据自变量(预测变量)的值预测因变量(目标变量)的值。此过程为探索性和证 ...
2017-11-02SPSS数据准备:数据验证 一、数据准备: 随着计算系统能力的提高,对信息的需要成比例增长,导致收集的数据越来越多—出现更多的个案、更多的变量以及更多的数据输入错误。这些错误会损害作为数据 ...
2017-11-02SPSS时间序列:应用时间序列模型 一、应用时间序列模型(分析-预测-应用模型) “应用时间序列模型”过程从外部文件加载现有的时间序列模型,并将它们应用于活动数据集。使用此过程,可以在不重新 ...
2017-11-02
SPSS时间序列:拟合优度测量 SPSS时间序列:拟合优度测量 一、拟合优度测量 1、固定的R方.将模型的平稳部分与简单均值模型相比较的测量。当具有趋势或季节性模式时,该度量适用于普通R方。固 ...
2017-11-01
R语言中的方差分析 方差分析:当包含的因子是解释变量时,我们关注的重点通常会从预测转向组别差异的分析,这种分析法称作方差分析(ANOVA)。 install.packages(c(\'multcomp\', \'gplots\', \'car\', \'HH ...
2017-11-01
方差分析:不同组间的差异真的显著吗 在数据分析中,按照具体维度将数据分组进行组间比较是十分常见的,例如在零售业态中,按照性别、城市、收入水平将消费者进行分组进行对比分析。看似简单,其实这其中经常伴 ...
2017-11-01SPSS时间序列:频谱分析 一、频谱分析(分析-预测-频谱分析) “频谱图”过程用于标识时间序列中的周期行为。它不需要分析一个时间点与下一个时间点之间的变异,只要按不同频率的周期性成分分析整 ...
2017-11-01
SPSS—方差分析(Analysis of Variance, ANOVA)—多因素方差分析(无重复试验双因素) 当遇到两个因素同时影响结果的情况,需要检验是一个因素起作用,还是两个因素都起作用,或者两个因素的影响都不显著 场 ...
2017-10-31
单因素下的方差分析 在方差分析中,有三个基本的假设: (1) 正态假设。对于因素的每个水平,其观测值都是来自正态总体的随机样本; (2) 方差齐次假设。各个总体的方差相同; (3) 独立假设。 ...
2017-10-31CDA中国官网是全国统一的数据分析师认证报名网站,由认证考试委员会与持证人会员、企业会员以及行业知名第三方机构共同合作,致 ...
2025-12-26在数字化转型浪潮下,审计行业正经历从“传统手工审计”向“大数据智能审计”的深刻变革。教育部发布的《大数据与审计专业教学标 ...
2025-12-26统计学作为数学的重要分支,是连接数据与决策的桥梁。随着数据规模的爆炸式增长和复杂问题的涌现,传统统计方法已难以应对高维、 ...
2025-12-26数字化浪潮席卷全球,数据已成为企业核心生产要素,“用数据说话、用数据决策”成为企业生存与发展的核心逻辑。在这一背景下,CD ...
2025-12-26箱线图(Box Plot)作为数据分布可视化的核心工具,凭借简洁的结构直观呈现数据的中位数、四分位数、异常值等关键信息,广泛应用 ...
2025-12-25在数据驱动决策的时代,基于历史数据进行精准预测已成为企业核心需求——无论是预测未来销售额、客户流失概率,还是产品需求趋势 ...
2025-12-25在数据驱动业务的实践中,CDA(Certified Data Analyst)数据分析师的核心工作,本质上是通过“指标”这一数据语言,解读业务现 ...
2025-12-25在金融行业的数字化转型进程中,SQL作为数据处理与分析的核心工具,贯穿于零售银行、证券交易、保险理赔、支付结算等全业务链条 ...
2025-12-24在数据分析领域,假设检验是验证“数据差异是否显著”的核心工具,而独立样本t检验与卡方检验则是其中最常用的两种方法。很多初 ...
2025-12-24在企业数字化转型的深水区,数据已成为核心生产要素,而“让数据可用、好用”则是挖掘数据价值的前提。对CDA(Certified Data An ...
2025-12-24数据分析师认证考试全面升级后,除了考试场次和报名时间,小伙伴们最关心的就是报名费了,报 ...
2025-12-23在Power BI数据可视化分析中,矩阵是多维度数据汇总的核心工具,而“动态计算平均值”则是矩阵分析的高频需求——无论是按类别计 ...
2025-12-23在SQL数据分析场景中,“日期转期间”是高频核心需求——无论是按日、周、月、季度还是年度统计数据,都需要将原始的日期/时间字 ...
2025-12-23在数据驱动决策的浪潮中,CDA(Certified Data Analyst)数据分析师的核心价值,早已超越“整理数据、输出报表”的基础层面,转 ...
2025-12-23在使用Excel数据透视表进行数据分析时,我们常需要在透视表旁添加备注列,用于标注数据背景、异常说明、业务解读等关键信息。但 ...
2025-12-22在MySQL数据库的性能优化体系中,索引是提升查询效率的“核心武器”——一个合理的索引能将百万级数据的查询耗时从秒级压缩至毫 ...
2025-12-22在数据量爆炸式增长的数字化时代,企业数据呈现“来源杂、格式多、价值不均”的特点,不少CDA(Certified Data Analyst)数据分 ...
2025-12-22在企业数据化运营体系中,同比、环比分析是洞察业务趋势、评估运营效果的核心手段。同比(与上年同期对比)可消除季节性波动影响 ...
2025-12-19在数字化时代,用户已成为企业竞争的核心资产,而“理解用户”则是激活这一资产的关键。用户行为分析系统(User Behavior Analys ...
2025-12-19在数字化转型的深水区,企业对数据价值的挖掘不再局限于零散的分析项目,而是转向“体系化运营”——数据治理体系作为保障数据全 ...
2025-12-19