假设检验中的P值 与显著性水平的联系 假设检验是推断统计中的一项重要内容。用SAS、SPSS等专业统计软件进行假设检验,在假设检验中常见到P值( P-Value,Probability,Pr),P值是进行检验决策的另 ...
2017-10-27显著性水平 置信度 置信区间 实例讲解 置信区间是指由样本统计量所构造的总体参数的估计区间。在统计学中,一个概率样本的置信区间(Confidence interval)是对这个样本的某个总体参数的区间估计。 置信 ...
2017-10-27置信区间、显著性检验和统计学意义 置信区间 估计参数真值所在的范围通常以区间的形式给出,同时还给出此区间包含参数真值的可信程度,这种形式的估计称为区间估计,这样的区间称为置信区间。 对于任意参 ...
2017-10-27T检验、F检验和统计学意义(P值或sig值) 1.T检验和F检验的由来 一般而言,为了确定从样本(sample)统计结果推论至总体时所犯错的概率,我们会利用统计学家所开发的一些统计方法,进行统计检定。 通过把所 ...
2017-10-27比较配对设计的SPSS与SAS实现 配对设计主要研究某种实验处理前后的对比状况,来判定该种处理是否有效。该种方法能够有效地控制非实验因素对结果的影响。 需要注意的是实验前后的结果不是独立的,就是说实验 ...
2017-10-27方差分析--T检验和F检验的异同 最近在图书馆借了本《R和ASReml-R统计分析教程》,林元震和陈晓阳主编的关于R的书籍,当时看上这本书的原因在于里面以统计学知识为主,作为R语言实战的良好补充,虽然R语言实战是 ...
2017-10-26SPSS——方差分析(Analysis of Variance, ANOVA)——多因素方差分析(无重复试验双因素) 当遇到两个因素同时影响结果的情况,需要检验是一个因素起作用,还是两个因素都起作用,或者两个因素的影响都不显著 场 ...
2017-10-26双因子方差分析:R中的双因子ANOVA 单因子方差分析是验证多个群组均值是否相等的非常有用的技术。但一些更复杂的问题这个技术就无能为力了。例如,有时需要考虑变异的两个因子来决定群组之间的平均依赖于群组分 ...
2017-10-26Python数据可视化:Matplotlib 直方图、箱线图、条形图、热图、折线图、散点图。。。 使用Python进行数据分析,数据的可视化是数据分析结果最好的展示方式,这里从Analytic Vidhya中找到的相关数据,进行一系 ...
2017-10-26Python数据可视化:箱线图 一、箱线图概念 箱形图(Box-plot)又称为盒须图、盒式图或箱线图,是一种用作显示一组数据分散情况资料的统计图。 计算过程: (1)计算上四分位数(Q3),中位数,下四 ...
2017-10-26双因素方差分析SPSS实现流程 有一水稻施肥的盆栽试验,设置了5个处理:A1和A2分别施用两种不同工艺流程的氨水,A3施碳酸氢铵,A4施尿素,A5为对照。每个处理各4盆,随机置于同一试验大棚。水稻稻谷产量见下表。 ...
2017-10-25Excel-直方图(频率分布)分析 直方图又称频率分布图,是一种显示数据分布情况的柱形图,即不同数据出现的频率。通过这些高度不同的柱形,可以直观、快速地观察数据的分散程度和中心趋势,从而分析流程满足客户 ...
2017-10-25箱形图以及python实践 最近在接触kaggle的竞赛示例,练习了一下,感觉受益匪浅。同时,心中也有个问题。拿到数据之后第一件事是什么?分析数据的情况?怎么分析?分析之后如何去处理数据呢?等等一些数据分析 ...
2017-10-25Excel-箱线图(数据分布)分析 箱线图(Boxplot)也称箱须图(Box-whisker Plot),它是用一组数据中的最小值、第一四分位数、中位数、第三四分位数和最大值来反映数据分布的中心位置和散布范围,可以粗略地看 ...
2017-10-25SPSS—描述性统计分析—探索性分析 菜单 除了可以计算基本的统计量之外,也可以给出一些简单的检验结果和图形,有助于用户进一步的分析数据。使得用户能够从大量的分析结果之中挖掘到所需要的统计信息。 ...
2017-10-24利用SPSS箱线图与Z分数法判别异常值的比较 箱线图前提不要求正态分布,而Z分数法前提要求正态分布。 箱线图(Boxplot)也称箱须图(Box-whisker Plot),是利用数据中的五个统计量:最小值、第一四分位 ...
2017-10-24Python中函数及默认参数的定义与调用操作实例分析 本文实例讲述了Python中函数及默认参数的定义与调用操作。分享给大家供大家参考,具体如下: #coding=utf8 \'\'\'\'\' Python中的函数使用小括号调用。函数 ...
2017-10-24Python字符串拼接的几种方法整理 这篇文章主要介绍了Python字符串拼接的几种方法整理的相关资料,这里提供了五种方法及实现,需要的朋友可以参考下. Python字符串拼接的几种方法整理 第一种 通过加号(+)的形 ...
2017-10-24SPSS Modeler数据挖掘:回归分析 1 模型定义 回归分析法是最基本的数据分析方法,回归预测就是利用回归分析方法,根据一个或一组自变量的变动情况预测与其相关的某随机变量的未来值。 回归分析是研究一个 ...
2017-10-24将SPSS分析技术应用于大数据 了解 SPSS? 中处理大数据的新功能。现在可以对 SPSS 分析资产轻松地进行修改,以便连接到不同的大数据来源,它们还可以在不同的部署模式(批处理或实时模式)下运行。SPSS 平台的 ...
2017-10-24基于 SPSS 的 ROC 曲线平滑调整方法与实践指南 摘要 受试者工作特征曲线(ROC 曲线)是评估诊断模型或预测指标效能的核心工具, ...
2025-08-25神经网络隐藏层神经元个数的确定方法与实践 摘要 在神经网络模型设计中,隐藏层神经元个数的确定是影响模型性能、训练效率与泛 ...
2025-08-25CDA 数据分析师与数据思维:驱动企业管理升级的核心力量 在数字化浪潮席卷全球的当下,数据已成为企业继人力、物力、财力之后的 ...
2025-08-25CDA数据分析师与数据指标:基础概念与协同逻辑 一、CDA 数据分析师:数据驱动时代的核心角色 1.1 定义与行业价值 CDA(Certified ...
2025-08-22Power Query 移动加权平均计算 Power Query 移动加权平均设置全解析:从原理到实战 一、移动加权平均法的核心逻辑 移动加权平均 ...
2025-08-22描述性统计:CDA数据分析师的基础核心与实践应用 一、描述性统计的定位:CDA 认证的 “入门基石” 在 CDA(Certified Data Analy ...
2025-08-22基于 Python response.text 的科技新闻数据清洗去噪实践 在通过 Python requests 库的 response.text 获取 API 数据后,原始数据 ...
2025-08-21基于 Python response.text 的科技新闻综述 在 Python 网络爬虫与 API 调用场景中,response.text 是 requests 库发起请求后获取 ...
2025-08-21数据治理新浪潮:CDA 数据分析师的战略价值与驱动逻辑 一、数据治理的多维驱动引擎 在数字经济与人工智能深度融合的时代,数据治 ...
2025-08-21Power BI 热力地图制作指南:从数据准备到实战分析 在数据可视化领域,热力地图凭借 “直观呈现数据密度与分布趋势” 的核心优势 ...
2025-08-20PyTorch 矩阵运算加速库:从原理到实践的全面解析 在深度学习领域,矩阵运算堪称 “计算基石”。无论是卷积神经网络(CNN)中的 ...
2025-08-20数据建模:CDA 数据分析师的核心驱动力 在数字经济浪潮中,数据已成为企业决策的核心资产。CDA(Certified Data Analyst)数据分 ...
2025-08-20KS 曲线不光滑:模型评估的隐形陷阱,从原因到破局的全指南 在分类模型(如风控违约预测、电商用户流失预警、医疗疾病诊断)的评 ...
2025-08-20偏态分布:揭开数据背后的非对称真相,赋能精准决策 在数据分析的世界里,“正态分布” 常被视为 “理想模型”—— 数据围绕均值 ...
2025-08-19CDA 数据分析师:数字化时代的价值创造者与决策智囊 在数据洪流席卷全球的今天,“数据驱动” 已从企业战略口号落地为核心 ...
2025-08-19CDA 数据分析师:善用 Power BI 索引列,提升数据处理与分析效率 在 Power BI 数据分析流程中,“数据准备” 是决定后续分析质量 ...
2025-08-18CDA 数据分析师:巧用 SQL 多个聚合函数,解锁数据多维洞察 在企业数据分析场景中,单一维度的统计(如 “总销售额”“用户总数 ...
2025-08-18CDA 数据分析师:驾驭表格结构数据的核心角色与实践应用 在企业日常数据存储与分析场景中,表格结构数据(如 Excel 表格、数据库 ...
2025-08-18PowerBI 累计曲线制作指南:从 DAX 度量到可视化落地 在业务数据分析中,“累计趋势” 是衡量业务进展的核心视角 —— 无论是 “ ...
2025-08-15Python 函数 return 多个数据:用法、实例与实战技巧 在 Python 编程中,函数是代码复用与逻辑封装的核心载体。多数场景下,我们 ...
2025-08-15