
有一水稻施肥的盆栽试验,设置了5个处理:A1和A2分别施用两种不同工艺流程的氨水,A3施碳酸氢铵,A4施尿素,A5为对照。每个处理各4盆,随机置于同一试验大棚。水稻稻谷产量见下表。现分析不同施肥处理下,水稻稻谷产量之间是否有显著差异。
1.1.3 课程实习任务
①按课程设计题目要求设计脚本;
②脚本能够完成对水稻数据的单因素方差分析;
③编写代码;
④脚本分析与调试;
⑤撰写实验报告。
1.1.4 课程实习目标
①巩固并加深对R语言的理解和掌握;
②通过课外学习拓展课程知识面;
③提高运用R语言解决生活实际问题的能力;
④初步掌握开发简单脚本的基本方法;
⑤掌握书写程序设计与软件开发的阐述性、总结性文档。2. 程序设计层次及说明展示
由于采用代码注释的方法,形式上不太美观,且不容易直接看到结果,造成阅览不变,故笔者采用了将脚本文件分部分执行,截图进行说明的方法,让每部操作清晰明了,结果明显。再在本节末尾附上代码文件以供阅览。
2.1 数据录入
此处是直接进行了程序录入,将数据录入参数shuidaodata中。其中,每行数据对应一个组别。
而这里可以也可使用scan函数进行交互键入,又或者将数据保存为csv格式,再用read.csv函数根据途径录入也可以。
这里根据每行对应的类型不同分别命名。命名的列量名称为参数name,数据框名为参数shuidao。
由于水稻数据内容构成比较简单,因素单一,所以不需要再融化数据框操作了,因为在数据框形成时已经完成了融化处理的结果,再进行转化反而繁琐,故不需要使用melt函数。同理,此份水稻数据中不包含冗余成分,故也同样不需要冗杂数据处理。
此处直接使用aov函数进行单因素方差分析,得到结果参数result的F值为11.18,p值小于0.05,且各因子水平的均值之间存在十分显著差异。
经过单因素方差分析可得知,肥料因素对产量的结果影响十分显著,也因此可以再做一些步骤来确认其真实性,以及深入了解其差异性的特质。
这里先用lm函数进行线性回归模型拟合,将结果参数mo录入qqPlot函数中,得到下图:
可见回归曲线在范围内,故数据符合正态性检验。
检验正态性的方法不唯一,在网上资料查询中,还有如下方法:
1.ks.test函数,但是由于数据中包含重复数值,故前提假设不成立,不便使用。
2.W检验的shapiro.test函数,得出p值大于0.05时数据正态性得到检验。
可见水稻数据正态性依旧得到检验。
3. fBasics包里的shapiroTest函数
可见水稻数据正态性依旧得到检验。
由于数据满足正态性,故使用bartlett.test函数进行方差齐性检验,得出结果p值远大于显著性水平0.05,因此不能拒绝原假设,认为不同水平下的水稻数据是等方差的。故等方差性得到检验。
而当数据不满足正态性时,也可以使用leveneTest函数进行方差齐性检验。
为更深一步探索每组之间的差异,采用TukeyHSD函数检验,如下:
其中修改了par中的绘图参数,以便图形更加简洁清晰,绘图如下:
在这里可以清晰的看出,与0坐标线是值信水平,与其相交的部分就是效果不显著的组别,反之则是效果显著的组别。也因此可以得出结论:A1-A5、A2-A4、A3-A5、A4-A5之间有显著的差异。
同样的,在网络搜索中,还有其他的方法可以揭示组别之间的差异,此处我使用的是多重t检验法:
在这里可以清晰的看出,p值小于0.05的就是差异较为显著的组别,和上一小节的结论一致。
2.9 结论
从水稻数据的单因素方差分析结果得知,肥料因素对产量的结果影响十分显著,且结果经检验符合正态性、等方差性,故结果较为可信。
最后经过各组均值差异检测后得知,A1-A5、A2-A4、A3-A5、A4-A5四组之间差异较为显著,且由题干可知,A5为对照组,故可知A1、A3、A4三组肥料效果较好。
2.10 代码展示
#数据录入
shuidaodata<-c(24,30,28,26,
27,24,21,26,
31,28,25,30,
32,33,33,28,
21,22,16,21)
#转化为数据框
name<-rep(paste(“A”,1:5,sep=”“),each=4)
shuidao<-data.frame(name,shuidaodata)
#单因素方差分析
result<-aov(shuidaodata~name,data=shuidao)
summary(result)
#正态性检验
#Q-Q图
mo<-lm(shuidaodata~name,data=shuidao)
library(car)
qqPlot(mo,main=”Q-Qplot图”,las=T)
#W检验
#shapiro.test(shuidaodata)
#fBasics包的shapiroTest
#library(fBasics)
#shapiroTest(shuidaodata)
#方差齐性检验
bartlett.test(shuidaodata~name,data=shuidao)
#各组均值差异
#杜奇检验
duqi<-TukeyHSD(result)
par(lwd=2,cex.lab=1.5,cex.axis=1.5,col.axis=”blue”,las=1)
plot(duqi,mgp=c(3,0.5,0))
#多重t检验法
#pairwise.t.text(shuidaodata,name)
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
用 Power BI 制作地图热力图:基于经纬度数据的实践指南 在数据可视化领域,地图热力图凭借直观呈现地理数据分布密度的优势,成 ...
2025-07-24解析 insert into select 是否会锁表:原理、场景与应对策略 在数据库操作中,insert into select 是一种常用的批量数据插入语句 ...
2025-07-24CDA 数据分析师的工作范围解析 在数字化时代的浪潮下,数据已成为企业发展的核心资产之一。CDA(Certified Data Analyst)数据分 ...
2025-07-24从 CDA LEVEL II 考试题型看 Python 数据分析要点 在数据科学领域蓬勃发展的当下,CDA(Certified Data Analyst)认证成为众多从 ...
2025-07-23用 Python 开启数据分析之旅:从基础到实践的完整指南 在数据驱动决策的时代,数据分析已成为各行业不可或缺的核心能力。而 Pyt ...
2025-07-23鸢尾花判别分析:机器学习中的经典实践案例 在机器学习的世界里,有一个经典的数据集如同引路明灯,为无数初学者打开了模式识别 ...
2025-07-23解析 response.text 与 response.content 的核心区别 在网络数据请求与处理的场景中,开发者经常需要从服务器返回的响应中提取数 ...
2025-07-22解析神经网络中 Softmax 函数的核心作用 在神经网络的发展历程中,激活函数扮演着至关重要的角色,它们为网络赋予了非线性能力, ...
2025-07-22CDA数据分析师证书考取全攻略 一、了解 CDA 数据分析师认证 CDA 数据分析师认证是一套科学化、专业化、国际化的人才考核标准, ...
2025-07-22左偏态分布转正态分布:方法、原理与实践 左偏态分布转正态分布:方法、原理与实践 在统计分析、数据建模和科学研究中,正态分 ...
2025-07-22你是不是也经常刷到别人涨粉百万、带货千万,心里痒痒的,想着“我也试试”,结果三个月过去,粉丝不到1000,播放量惨不忍睹? ...
2025-07-21我是陈辉,一个创业十多年的企业主,前半段人生和“文字”紧紧绑在一起。从广告公司文案到品牌策划,再到自己开策划机构,我靠 ...
2025-07-21CDA 数据分析师的职业生涯规划:从入门到卓越的成长之路 在数字经济蓬勃发展的当下,数据已成为企业核心竞争力的重要来源,而 CD ...
2025-07-21MySQL执行计划中rows的计算逻辑:从原理到实践 MySQL 执行计划中 rows 的计算逻辑:从原理到实践 在 MySQL 数据库的查询优化中 ...
2025-07-21在AI渗透率超85%的2025年,企业生存之战就是数据之战,CDA认证已成为决定企业存续的生死线!据麦肯锡全球研究院数据显示,AI驱 ...
2025-07-2035岁焦虑像一把高悬的利刃,裁员潮、晋升无望、技能过时……当职场中年危机与数字化浪潮正面交锋,你是否发现: 简历投了10 ...
2025-07-20CDA 数据分析师报考条件详解与准备指南 在数据驱动决策的时代浪潮下,CDA 数据分析师认证愈发受到瞩目,成为众多有志投身数 ...
2025-07-18刚入职场或是在职场正面临岗位替代、技能更新、人机协作等焦虑的打工人,想要找到一条破解职场焦虑和升职瓶颈的系统化学习提升 ...
2025-07-182025被称为“AI元年”,而AI,与数据密不可分。网易公司创始人丁磊在《AI思维:从数据中创造价值的炼金术 ...
2025-07-18CDA 数据分析师:数据时代的价值挖掘者 在大数据席卷全球的今天,数据已成为企业核心竞争力的重要组成部分。从海量数据中提取有 ...
2025-07-18