有一水稻施肥的盆栽试验,设置了5个处理:A1和A2分别施用两种不同工艺流程的氨水,A3施碳酸氢铵,A4施尿素,A5为对照。每个处理各4盆,随机置于同一试验大棚。水稻稻谷产量见下表。现分析不同施肥处理下,水稻稻谷产量之间是否有显著差异。
1.1.3 课程实习任务
①按课程设计题目要求设计脚本;
②脚本能够完成对水稻数据的单因素方差分析;
③编写代码;
④脚本分析与调试;
⑤撰写实验报告。
1.1.4 课程实习目标
①巩固并加深对R语言的理解和掌握;
②通过课外学习拓展课程知识面;
③提高运用R语言解决生活实际问题的能力;
④初步掌握开发简单脚本的基本方法;
⑤掌握书写程序设计与软件开发的阐述性、总结性文档。2. 程序设计层次及说明展示
由于采用代码注释的方法,形式上不太美观,且不容易直接看到结果,造成阅览不变,故笔者采用了将脚本文件分部分执行,截图进行说明的方法,让每部操作清晰明了,结果明显。再在本节末尾附上代码文件以供阅览。
2.1 数据录入
此处是直接进行了程序录入,将数据录入参数shuidaodata中。其中,每行数据对应一个组别。
而这里可以也可使用scan函数进行交互键入,又或者将数据保存为csv格式,再用read.csv函数根据途径录入也可以。
这里根据每行对应的类型不同分别命名。命名的列量名称为参数name,数据框名为参数shuidao。
由于水稻数据内容构成比较简单,因素单一,所以不需要再融化数据框操作了,因为在数据框形成时已经完成了融化处理的结果,再进行转化反而繁琐,故不需要使用melt函数。同理,此份水稻数据中不包含冗余成分,故也同样不需要冗杂数据处理。
此处直接使用aov函数进行单因素方差分析,得到结果参数result的F值为11.18,p值小于0.05,且各因子水平的均值之间存在十分显著差异。
经过单因素方差分析可得知,肥料因素对产量的结果影响十分显著,也因此可以再做一些步骤来确认其真实性,以及深入了解其差异性的特质。
这里先用lm函数进行线性回归模型拟合,将结果参数mo录入qqPlot函数中,得到下图:
可见回归曲线在范围内,故数据符合正态性检验。
检验正态性的方法不唯一,在网上资料查询中,还有如下方法:
1.ks.test函数,但是由于数据中包含重复数值,故前提假设不成立,不便使用。
2.W检验的shapiro.test函数,得出p值大于0.05时数据正态性得到检验。
可见水稻数据正态性依旧得到检验。
3. fBasics包里的shapiroTest函数
可见水稻数据正态性依旧得到检验。
由于数据满足正态性,故使用bartlett.test函数进行方差齐性检验,得出结果p值远大于显著性水平0.05,因此不能拒绝原假设,认为不同水平下的水稻数据是等方差的。故等方差性得到检验。
而当数据不满足正态性时,也可以使用leveneTest函数进行方差齐性检验。
为更深一步探索每组之间的差异,采用TukeyHSD函数检验,如下:
其中修改了par中的绘图参数,以便图形更加简洁清晰,绘图如下:
在这里可以清晰的看出,与0坐标线是值信水平,与其相交的部分就是效果不显著的组别,反之则是效果显著的组别。也因此可以得出结论:A1-A5、A2-A4、A3-A5、A4-A5之间有显著的差异。
同样的,在网络搜索中,还有其他的方法可以揭示组别之间的差异,此处我使用的是多重t检验法:
在这里可以清晰的看出,p值小于0.05的就是差异较为显著的组别,和上一小节的结论一致。
2.9 结论
从水稻数据的单因素方差分析结果得知,肥料因素对产量的结果影响十分显著,且结果经检验符合正态性、等方差性,故结果较为可信。
最后经过各组均值差异检测后得知,A1-A5、A2-A4、A3-A5、A4-A5四组之间差异较为显著,且由题干可知,A5为对照组,故可知A1、A3、A4三组肥料效果较好。
2.10 代码展示
#数据录入
shuidaodata<-c(24,30,28,26,
27,24,21,26,
31,28,25,30,
32,33,33,28,
21,22,16,21)
#转化为数据框
name<-rep(paste(“A”,1:5,sep=”“),each=4)
shuidao<-data.frame(name,shuidaodata)
#单因素方差分析
result<-aov(shuidaodata~name,data=shuidao)
summary(result)
#正态性检验
#Q-Q图
mo<-lm(shuidaodata~name,data=shuidao)
library(car)
qqPlot(mo,main=”Q-Qplot图”,las=T)
#W检验
#shapiro.test(shuidaodata)
#fBasics包的shapiroTest
#library(fBasics)
#shapiroTest(shuidaodata)
#方差齐性检验
bartlett.test(shuidaodata~name,data=shuidao)
#各组均值差异
#杜奇检验
duqi<-TukeyHSD(result)
par(lwd=2,cex.lab=1.5,cex.axis=1.5,col.axis=”blue”,las=1)
plot(duqi,mgp=c(3,0.5,0))
#多重t检验法
#pairwise.t.text(shuidaodata,name)
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
数据分析在当今信息时代发挥着重要作用。单因素方差分析(One-Way ANOVA)是一种关键的统计方法,用于比较三个或更多独立样本组 ...
2025-04-25CDA持证人简介: 居瑜 ,CDA一级持证人国企财务经理,13年财务管理运营经验,在数据分析就业和实践经验方面有着丰富的积累和经 ...
2025-04-25在当今数字化时代,数据分析师的重要性与日俱增。但许多人在踏上这条职业道路时,往往充满疑惑: 如何成为一名数据分析师?成为 ...
2025-04-24以下的文章内容来源于刘静老师的专栏,如果您想阅读专栏《刘静:10大业务分析模型突破业务瓶颈》,点击下方链接 https://edu.cda ...
2025-04-23大咖简介: 刘凯,CDA大咖汇特邀讲师,DAMA中国分会理事,香港金管局特聘数据管理专家,拥有丰富的行业经验。本文将从数据要素 ...
2025-04-22CDA持证人简介 刘伟,美国 NAU 大学计算机信息技术硕士, CDA数据分析师三级持证人,现任职于江苏宝应农商银行数据治理岗。 学 ...
2025-04-21持证人简介:贺渲雯 ,CDA 数据分析师一级持证人,互联网行业数据分析师 今天我将为大家带来一个关于用户私域用户质量数据分析 ...
2025-04-18一、CDA持证人介绍 在数字化浪潮席卷商业领域的当下,数据分析已成为企业发展的关键驱动力。为助力大家深入了解数据分析在电商行 ...
2025-04-17CDA持证人简介:居瑜 ,CDA一级持证人,国企财务经理,13年财务管理运营经验,在数据分析实践方面积累了丰富的行业经验。 一、 ...
2025-04-16持证人简介: CDA持证人刘凌峰,CDA L1持证人,微软认证讲师(MCT)金山办公最有价值专家(KVP),工信部高级项目管理师,拥有 ...
2025-04-15持证人简介:CDA持证人黄葛英,ICF国际教练联盟认证教练,前字节跳动销售主管,拥有丰富的行业经验。在实际生活中,我们可能会 ...
2025-04-14在 Python 编程学习与实践中,Anaconda 是一款极为重要的工具。它作为一个开源的 Python 发行版本,集成了众多常用的科学计算库 ...
2025-04-14随着大数据时代的深入发展,数据运营成为企业不可或缺的岗位之一。这个职位的核心是通过收集、整理和分析数据,帮助企业做出科 ...
2025-04-11持证人简介:CDA持证人黄葛英,ICF国际教练联盟认证教练,前字节跳动销售主管,拥有丰富的行业经验。 本次分享我将以教培行业为 ...
2025-04-11近日《2025中国城市长租市场发展蓝皮书》(下称《蓝皮书》)正式发布。《蓝皮书》指出,当前我国城市住房正经历从“增量扩张”向 ...
2025-04-10在数字化时代的浪潮中,数据已经成为企业决策和运营的核心。每一位客户,每一次交易,都承载着丰富的信息和价值。 如何在海量客 ...
2025-04-09数据是数字化的基础。随着工业4.0的推进,企业生产运作过程中的在线数据变得更加丰富;而互联网、新零售等C端应用的丰富多彩,产 ...
2025-04-094月7日,美国关税政策对全球金融市场的冲击仍在肆虐,周一亚市早盘,美股股指、原油期货、加密货币、贵金属等资产齐齐重挫,市场 ...
2025-04-08背景 3月26日,科技圈迎来一则重磅消息,苹果公司宣布向浙江大学捐赠 3000 万元人民币,用于支持编程教育。 这一举措并非偶然, ...
2025-04-07在当今数据驱动的时代,数据分析能力备受青睐,数据分析能力频繁出现在岗位需求的描述中,不分岗位的任职要求中,会特意标出“熟 ...
2025-04-03