
Excel-直方图(频率分布)分析
直方图又称频率分布图,是一种显示数据分布情况的柱形图,即不同数据出现的频率。通过这些高度不同的柱形,可以直观、快速地观察数据的分散程度和中心趋势,从而分析流程满足客户需求的程度。图9-42列出了直方图能够回答的问题。
图9-42直方图能够回答的问题
直方图适用于连续数据的分析(如客户收到订单商品的天数),因此直方图对数据量有一定的要求。如果数据量很少时,可以直接使用散点图进行展示。
在Excel中绘制直方图有两种方式,一种是手动绘制,即自己统计出数据的频率,然后通过插入柱形图进行实现;另一种方法是使用数据分析工具直接生成统计图形。
1.手动绘制
图9-43是网站手机数码类商品客户收货天数测量结果,现在统计这些数据的分布频率。
首先,使用Excel的MAX和MIN函数找出该组数据的最大值和最小值,计算最大值和最小值之差,即数据范围;然后,根据数据特征或统计需要,确定要分的组数。该组数据的最大值和最小值分别为24和1,经过讨论,决定将数据分为[1~5]、[6~10]、[11~15]、[15~20]、[21~24] 5个组。
图9-43手机数码类商品客户收货天数
下面需要统计数据在各组的出现次数,即频率。在Excel中可以使用FREQUENCY(data_array,bins_array)函数统计数据的频率,data_array是要计算频率的数据,bins_array是对分组区间的引用。在图9-44所示的H2~H6单元格中分别输入每组的最大值,然后选定J2:J6单元格,输入公式=FREQUENCY(A1:F7,H2:H6)后,按下<Ctrl+Shift+Enter>组合键,即可看到各组中数据的出现次数。
图9-44统计数据在各组的出现次数
选定I1:J6区域,在“插入”功能区的“图表”模块中,单击“柱形图”Ž“簇状柱形图”按钮,即可看到绘制的柱形图,即直方图,如图9-45所示。可以看到,客户收货天数主要集中在6~10天。
图9-45插入柱形图
然后可以对图表进行美化,去除图例栏,修改图表的标题为“客户收货时间区间分布图”,如图9-46所示。
图9-46美化后的统计图形
2.数据分析工具绘制
单击“数据”选项卡中的“数据分析”按钮,打开“数据分析”对话框,如图9-47所示。
图9-47“数据分析”对话框
从分析工具列表中选择“直方图”后单击“确定”按钮,将打开如图9-48所示的“直方图”对话框。
图9-48“直方图”对话框
输入区域即存放原始采集数据的位置,选择A1:F7区域。接收区域是设置的区间分割点,仍旧使用手动统计频率时的H2:H6区域。
输出区域即存放频率统计结果的位置,也就是说,Excel会根据指定的区间分割点,自动计算原始采集数据的频率。
勾选“图表输出”复选框才会输出图表,否则仅显示频率统计结果。“柏拉图”和“累积百分率”请参考XX节“帕累托图”的介绍。
设置完成后,单击“确定”按钮,即可看到频率统计结果和输出的统计图表,如图9-49所示。
图9-49输出的频率统计结果和图表
可以看到自动统计结果(A10:B16)与手工统计的结果(J2:J6区域)完全相同,但是包含了一个“其他”选项,并且图表的分类轴标签使用的是区间分割点值,这时需要对图表进行一些美化调整。删除“其他”选项数据,然后将I2:I6区域的组标识数据复制到A11:A15区域修正分类轴标签显示,并对图表标题进行修改等,最后结果如图9-50所示。
图9-50美化后的直方图
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
Excel 导入数据含缺失值?详解 dropna 函数的功能与实战应用 在用 Python(如 pandas 库)处理 Excel 数据时,“缺失值” 是高频 ...
2025-09-16深入解析卡方检验与 t 检验:差异、适用场景与实践应用 在数据分析与统计学领域,假设检验是验证研究假设、判断数据差异是否 “ ...
2025-09-16CDA 数据分析师:掌控表格结构数据全功能周期的专业操盘手 表格结构数据(以 “行 - 列” 存储的结构化数据,如 Excel 表、数据 ...
2025-09-16MySQL 执行计划中 rows 数量的准确性解析:原理、影响因素与优化 在 MySQL SQL 调优中,EXPLAIN执行计划是核心工具,而其中的row ...
2025-09-15解析 Python 中 Response 对象的 text 与 content:区别、场景与实践指南 在 Python 进行 HTTP 网络请求开发时(如使用requests ...
2025-09-15CDA 数据分析师:激活表格结构数据价值的核心操盘手 表格结构数据(如 Excel 表格、数据库表)是企业最基础、最核心的数据形态 ...
2025-09-15Python HTTP 请求工具对比:urllib.request 与 requests 的核心差异与选择指南 在 Python 处理 HTTP 请求(如接口调用、数据爬取 ...
2025-09-12解决 pd.read_csv 读取长浮点数据的科学计数法问题 为帮助 Python 数据从业者解决pd.read_csv读取长浮点数据时的科学计数法问题 ...
2025-09-12CDA 数据分析师:业务数据分析步骤的落地者与价值优化者 业务数据分析是企业解决日常运营问题、提升执行效率的核心手段,其价值 ...
2025-09-12用 SQL 验证业务逻辑:从规则拆解到数据把关的实战指南 在业务系统落地过程中,“业务逻辑” 是连接 “需求设计” 与 “用户体验 ...
2025-09-11塔吉特百货孕妇营销案例:数据驱动下的精准零售革命与启示 在零售行业 “流量红利见顶” 的当下,精准营销成为企业突围的核心方 ...
2025-09-11CDA 数据分析师与战略 / 业务数据分析:概念辨析与协同价值 在数据驱动决策的体系中,“战略数据分析”“业务数据分析” 是企业 ...
2025-09-11Excel 数据聚类分析:从操作实践到业务价值挖掘 在数据分析场景中,聚类分析作为 “无监督分组” 的核心工具,能从杂乱数据中挖 ...
2025-09-10统计模型的核心目的:从数据解读到决策支撑的价值导向 统计模型作为数据分析的核心工具,并非简单的 “公式堆砌”,而是围绕特定 ...
2025-09-10CDA 数据分析师:商业数据分析实践的落地者与价值创造者 商业数据分析的价值,最终要在 “实践” 中体现 —— 脱离业务场景的分 ...
2025-09-10机器学习解决实际问题的核心关键:从业务到落地的全流程解析 在人工智能技术落地的浪潮中,机器学习作为核心工具,已广泛应用于 ...
2025-09-09SPSS 编码状态区域中 Unicode 的功能与价值解析 在 SPSS(Statistical Product and Service Solutions,统计产品与服务解决方案 ...
2025-09-09CDA 数据分析师:驾驭商业数据分析流程的核心力量 在商业决策从 “经验驱动” 向 “数据驱动” 转型的过程中,商业数据分析总体 ...
2025-09-09R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08