
置信区间、显著性检验和统计学意义
置信区间
估计参数真值所在的范围通常以区间的形式给出,同时还给出此区间包含参数真值的可信程度,这种形式的估计称为区间估计,这样的区间称为置信区间。
对于任意参数θ在可能的取值范围内,P{θ1<θ<θ2}≥1-α,则称随机区间(θ1,θ2)是参数θ的置信水平为1-α的置信区间,θ1和θ2分别称为置信水平为1-α的双侧置信区间的置信下限和置信上限,1-α称为置信水平。
对于特殊问题,我们关心的是重点在于参数θ的上限或下限,比如对于设备的使用寿命,关心平均寿命的“下限”;对于药品中杂质含量,关心平均含量的“上限”。对于任意参数θ在可能的取值范围内,P{θ<θ2}≥1-α或P{θ>θ1}≥1-α,则称随机区间(-∞,θ2)或(θ1,∞)是参数θ的置信水平为1-α的单侧置信区间,θ1和θ2分别称为置信水平为1-α的单侧置信下限和单侧置信上限。
显著性检验
统计推断(statistical inference),是根据带随机性的观测数据(样本)以及问题的条件和假定(模型),而对未知事物,作出的以概率形式表述的推断。主要包括参数估计和假设检验。
参数估计包括点估计和区间估计。点估计包括矩估计法和最大似然估计法。
假设检验:在总体的分布函数完全未知或只知其形式、但不知其参数的情况,为了推断总体的某些未知特性,提出某些关于总体的假设。再根据样本,对所提出的假设作出是接受,还是拒绝的决策。假设检验是作出这一决策的过程。
对两者有无显著性差异的判断是在显著性水平α之下作出的。显著性水平α为满足原假设时,发生不可能事件的概率的上限。如果样本发生的概率小于显著性水平α,证明小概率事件(不可能事件)发生了,样本与假设的差异是显著的,故拒绝原假设;否则,接受原假设。显著性水平α即为拒绝原假设的标准。P值和sig值表示在原假设的条件下,样本发生的概率,也是拒绝原假设的依据。
由于检验法则是根据样本作出的,总有可能作出错误的决策。在原假设为真时,可能犯拒绝原假设的错误,称这类“弃真”的错误为第一类错误;在原假设为不真时,有可能接受原假设,称这类“取伪”的错误为第二类错误。
一般来说,我们总是控制第一类错误的概率,使它不大于显著性水平α。α的大小视具体情况而定,通常取0.1,0.05,0.01,0.005 等值。只对第一类错误的概率加以控制,而不考虑第二类错误的概率的检验,称为显著性检验。区分双边假设检验和单边假设检验。
无论是显著性相关,还是显著性差异,显著性表示的意义为出现该情况的概率大于1-α。
Z检验:单个总体,方差已知,关于均值的检验。
T检验:单个总体,方差未知,关于均值的检验;两个总体,方差相同,关于均值差的检验;两个总体,方差未知,配对出现,关于均值差的检验(配对t检验:配对求差值,构成单个总体)。
卡方检验:单个总体,均值未知,关于方差的检验。
F检验:两个总体,均值未知,关于方差的检验。
T检验、F检验和统计学意义(P值或sig值)
1. T检验和F检验的由来
一般而言,为了确定从样本(sample)统计结果推论至总体时所犯错的概率,我们会利用统计学家所开发的一些统计方法,进行统计检定。
通过把所得到的统计检定值,与统计学家建立了一些随机变量的概率分布(probability distribution)进行比较,我们可以知道在多少%的机会下会得到目前的结果。倘若经比较后发现,出现这结果的机率很少,亦即是说,是在机会很少、很罕有的情况下才出现;那我们便可以有信心的说,这不是巧合,是具有统计学上的意义的(用统计学的话讲,就是能够拒绝虚无假设null hypothesis,Ho)。相反,若比较后发现,出现的机率很高,并不罕见;那我们便不能很有信心的直指这不是巧合,也许是巧合,也许不是,但我们没能确定。
F值和t值就是这些统计检定值,与它们相对应的概率分布,就是F分布和t分布。统计显著性(sig)就是出现目前样本这结果的机率。
2. 统计学意义(P值或sig值)
19楼空间eo-{y"k8w%p~;u结果的统计学意义是结果真实程度(能够代表总体)的一种估计方法。专业上,p值为结果可信程度的一个递减指标,p值越大,我们越不能认为样本中变量的关联是总体中各变量关联的可靠指标。p值是将观察结果认为有效即具有总体代表性的犯错概率。如p=0.05提示样本中变量关联有5%的可能是由于偶然性造成的。即假设总体中任意变量间均无关联,我们重复类似实验,会发现约20个实验中有一个实验,我们所研究的变量关联将等于或强于我们的实验结果。(这并不是说如果变量间存在关联,我们可得到5%或95%次数的相同结果,当总体中的变量存在关联,重复研究和发现关联的可能性与设计的统计学效力有关。)在许多研究领域,0.05的p值通常被认为是可接受错误的边界水平。
通常,原假设为无差别,若P值小于边界水平(比如0.05),小概率事件发生了,推翻原假设,认为差别是显著的。
所有的检验统计都是正态分布的吗
并不完全如此,但大多数检验都直接或间接与之有关,可以从正态分布中推导出来,如t检验、f检验或卡方检验。这些检验一般都要求:所分析变量在总体中呈正态分布,即满足所谓的正态假设。许多观察变量的确是呈正态分布的,这也是正态分布是现实世界的基本特征的原因。当人们用在正态分布基础上建立的检验分析非正态分布变量的数据时问题就产生了,(参阅非参数和方差分析的正态性检验)。这种条件下有两种方法:一是用替代的非参数检验(即无分布性检验),但这种方法不方便,因为从它所提供的结论形式看,这种方法统计效率低下、不灵活。另一种方法是:当确定样本量足够大的情况下,通常还是可以使用基于正态分布前提下的检验。后一种方法是基于一个相当重要的原则产生的,该原则对正态方程基础上的总体检验有极其重要的作用。即,随着样本量的增加,样本分布形状趋于正态,即使所研究的变量分布并不呈正态。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22在企业数据分析中,“数据孤岛” 是制约分析深度的核心瓶颈 —— 用户数据散落在注册系统、APP 日志、客服记录中,订单数据分散 ...
2025-10-22在神经网络设计中,“隐藏层个数” 是决定模型能力的关键参数 —— 太少会导致 “欠拟合”(模型无法捕捉复杂数据规律,如用单隐 ...
2025-10-21在特征工程流程中,“单变量筛选” 是承上启下的关键步骤 —— 它通过分析单个特征与目标变量的关联强度,剔除无意义、冗余的特 ...
2025-10-21在数据分析全流程中,“数据读取” 常被误解为 “简单的文件打开”—— 双击 Excel、执行基础 SQL 查询即可完成。但对 CDA(Cert ...
2025-10-21在实际业务数据分析中,我们遇到的大多数数据并非理想的正态分布 —— 电商平台的用户消费金额(少数用户单次消费上万元,多数集 ...
2025-10-20在数字化交互中,用户的每一次操作 —— 从电商平台的 “浏览商品→加入购物车→查看评价→放弃下单”,到内容 APP 的 “点击短 ...
2025-10-20在数据分析的全流程中,“数据采集” 是最基础也最关键的环节 —— 如同烹饪前需备好新鲜食材,若采集的数据不完整、不准确或不 ...
2025-10-20在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15