方差分析--T检验和F检验的异同
最近在图书馆借了本《R和ASReml-R统计分析教程》,林元震和陈晓阳主编的关于R的书籍,当时看上这本书的原因在于里面以统计学知识为主,作为R语言实战的良好补充,虽然R语言实战是一本相当详实的介绍R语言的书,但是其中的统计学原理往往一笔带过(虽然本书也不是很详尽),但是作为一个数据分析从业人员,我感觉对于很多统计理论,达到可以讲明白原理和逻辑就可以,具体的计算过程和推导反而在其次,而最重要的是在什么情况下应用什么算法和模型,这才是最关键的。
这篇博客分享下对方差分析的理解。
其实在之前的文章中,对t检验相关说明比较多,而方差分析和t检验方法的功效和作用非常相近,网上对此也不是很详尽,下面首先说说我的理解。
这里说的t检验是双样本t,也就是两组数,看这两组数据对应的总体差异;方差检验也是看两组(及以上)的数据见有没有差异,那么其实二者是不是一样呢?
其实在某种程度是一样的。下面的情况分为两个维度:检验的组数和组内方差
情况1:仅有两组,且组内方差相等
在这种情况下,t检验和F检验相等
我们看下F检验的原理,F检验是看F分布,而F value是SSB/SSW,关于SSB和SSW可以参考可汗学院有一节专门讲组间平方和(SSB)和组内平方和(SSW),如果我们把组间平方和理解为两组之间的差异,组内平方和理解为两组内部不同数据的差异的话,那么简单点说,两个数据在有差异的前提下,究竟是组间的差异大,还是组内的差异大呢?如果是组间的差异大,那么这两组数据本身不一致的概率就非常大了,对应F值比较大;
那么看看两组的t检验,t检验的前提是两组数据都是从不同样本抽出的数据,而样本都符合正态分布,然后用这两个样本推断这两个总体存不存在差异;举个例子,我有一缸黑米,和一缸白米,为了看这两缸米的密度有没有差异,用小勺各盛了十次,观察密度,然后用小勺的十次,去判定总体的差异;如果想用t检验,前提假设是由于随机误差,两缸米在抽取的时候密度会有随机误差,那么每次抽取的密度都呈现正态分布,还有一个假设,就是两个勺子盛的米离散程度是相等的,也就是方差相等。所以,在方差相等,或者说方差齐的前提是t检验的必要前提。而F检验不要求方差齐,或者说本身就是检查方差的差异的。
按照之前的定义,如果两组方差齐,由于F检验的F值是SSB/SSW,组内方差相等,如果两组有变异,那么全部都是由于组间差异造成的,F检验自然成了t检验,下面附上F检验和t检验的代码和结果(数据参考了《R和ASReml-R统计分析教程》中的数据):
weight<-scan()
16.68 20.67 18.42 18 17.44 15.95 18.68 23.22 21.42 19 18.92 NA
V<-rep(c('LY1','DXY'),rep(6,2))
df<-data.frame(V,weight)
a<-subset(df$weight,V=='LY1')
b<-subset(df$weight,V=='DXY')
var.test(a,b)
t.test(a,b,var.equal=T,paired = F)
t检验的结果是:
Two Sample t-test
data: a and b
t = -2.1808, df = 9, p-value = 0.0571
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
-4.86513222 0.08913222
sample estimates:
mean of x mean of y
17.860 20.248
F检验:
fit<-aov(weight~V,data=df)
summary(fit)
结果:
Df Sum Sq Mean Sq F value Pr(>F)
V 1 15.55 15.55 4.756 0.0571 .
Residuals 9 29.43 3.27
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
1 observation deleted due to missingness
可以看到p值都是0.0571,相等,因为前提是在t检验中加入了var.test,然后设置参数var.equal=T。下面看看方差不等的情况:
情况2,两组数据,方差不齐
在这种情况下,如果忽略了方差齐的前提,比如我重新做一组数据,先检测防擦:
weight<-scan()
16.68 20.67 18.42 18 17.44 30 18.68 23.22 21.42 19 18.92 82
V<-rep(c('LY1','DXY'),rep(6,2))
df<-data.frame(V,weight)
a<-subset(df$weight,V=='LY1')
b<-subset(df$weight,V=='DXY')
var.test(a,b)
看到检测结果:
F test to compare two variances
data: a and b
F = 0.038913, num df = 5, denom df = 5, p-value = 0.002832
alternative hypothesis: true ratio of variances is not equal to 1
95 percent confidence interval:
0.005445095 0.278085194
sample estimates:
ratio of variances
0.03891273
p为0.002832,所以方差不齐;
但是然后我们进行方差齐的t检验:
t.test(a,b,var.equal=T,paired = F)
Two Sample t-test
data: a and b
t = -0.98304, df = 10, p-value = 0.3488
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
-33.77097 13.09431
sample estimates:
mean of x mean of y
20.20167 30.54000
看到两组均值相等的概率好大;
方差不齐调整后的t检验:
t.test(a,b,var.equal=F,paired = F)
Welch Two Sample t-test
data: a and b
t = -0.98304, df = 5.3885, p-value = 0.3676
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
-36.79643 16.11976
sample estimates:
mean of x mean of y
20.20167 30.54000
P值是0.3676 稍微比之前大一些;
F检验:
fit<-aov(weight~V,data=df)
summary(fit)
Df Sum Sq Mean Sq F value Pr(>F)
V 1 321 320.6 0.966 0.349
Residuals 10 3318 331.8
p是0.349;这和t检验在方差齐的前提下是相等的。
我理解是这样的:
t检验的前提是方差齐,只有方差齐了,t检验的结果才反应两组数据的是否有差异,否则如果方差不齐的话,会把组内的差异也考虑进去,所以判定的概率就更宽松;而F检验其实就是看组间差异和组内差异的比较,所以本质上和t检验方差齐的概念相似。但是实际上在方差不齐的时候是无法进行t检验的,结果不具有统计学意义。
情况3&4:多组情况下,方差齐&多组方差不齐
t检验一般适用于两组,所以在多维的情况下,不适用t检验,而F检验可以判定多组、一组多变量和多组间有交互(单因素、协方差、双因素无重复、双因素有重复等),然后在通过两两比较进行分析,用duncan和tukey等方法去判定。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
数据分析在当今信息时代发挥着重要作用。单因素方差分析(One-Way ANOVA)是一种关键的统计方法,用于比较三个或更多独立样本组 ...
2025-04-25CDA持证人简介: 居瑜 ,CDA一级持证人国企财务经理,13年财务管理运营经验,在数据分析就业和实践经验方面有着丰富的积累和经 ...
2025-04-25在当今数字化时代,数据分析师的重要性与日俱增。但许多人在踏上这条职业道路时,往往充满疑惑: 如何成为一名数据分析师?成为 ...
2025-04-24以下的文章内容来源于刘静老师的专栏,如果您想阅读专栏《刘静:10大业务分析模型突破业务瓶颈》,点击下方链接 https://edu.cda ...
2025-04-23大咖简介: 刘凯,CDA大咖汇特邀讲师,DAMA中国分会理事,香港金管局特聘数据管理专家,拥有丰富的行业经验。本文将从数据要素 ...
2025-04-22CDA持证人简介 刘伟,美国 NAU 大学计算机信息技术硕士, CDA数据分析师三级持证人,现任职于江苏宝应农商银行数据治理岗。 学 ...
2025-04-21持证人简介:贺渲雯 ,CDA 数据分析师一级持证人,互联网行业数据分析师 今天我将为大家带来一个关于用户私域用户质量数据分析 ...
2025-04-18一、CDA持证人介绍 在数字化浪潮席卷商业领域的当下,数据分析已成为企业发展的关键驱动力。为助力大家深入了解数据分析在电商行 ...
2025-04-17CDA持证人简介:居瑜 ,CDA一级持证人,国企财务经理,13年财务管理运营经验,在数据分析实践方面积累了丰富的行业经验。 一、 ...
2025-04-16持证人简介: CDA持证人刘凌峰,CDA L1持证人,微软认证讲师(MCT)金山办公最有价值专家(KVP),工信部高级项目管理师,拥有 ...
2025-04-15持证人简介:CDA持证人黄葛英,ICF国际教练联盟认证教练,前字节跳动销售主管,拥有丰富的行业经验。在实际生活中,我们可能会 ...
2025-04-14在 Python 编程学习与实践中,Anaconda 是一款极为重要的工具。它作为一个开源的 Python 发行版本,集成了众多常用的科学计算库 ...
2025-04-14随着大数据时代的深入发展,数据运营成为企业不可或缺的岗位之一。这个职位的核心是通过收集、整理和分析数据,帮助企业做出科 ...
2025-04-11持证人简介:CDA持证人黄葛英,ICF国际教练联盟认证教练,前字节跳动销售主管,拥有丰富的行业经验。 本次分享我将以教培行业为 ...
2025-04-11近日《2025中国城市长租市场发展蓝皮书》(下称《蓝皮书》)正式发布。《蓝皮书》指出,当前我国城市住房正经历从“增量扩张”向 ...
2025-04-10在数字化时代的浪潮中,数据已经成为企业决策和运营的核心。每一位客户,每一次交易,都承载着丰富的信息和价值。 如何在海量客 ...
2025-04-09数据是数字化的基础。随着工业4.0的推进,企业生产运作过程中的在线数据变得更加丰富;而互联网、新零售等C端应用的丰富多彩,产 ...
2025-04-094月7日,美国关税政策对全球金融市场的冲击仍在肆虐,周一亚市早盘,美股股指、原油期货、加密货币、贵金属等资产齐齐重挫,市场 ...
2025-04-08背景 3月26日,科技圈迎来一则重磅消息,苹果公司宣布向浙江大学捐赠 3000 万元人民币,用于支持编程教育。 这一举措并非偶然, ...
2025-04-07在当今数据驱动的时代,数据分析能力备受青睐,数据分析能力频繁出现在岗位需求的描述中,不分岗位的任职要求中,会特意标出“熟 ...
2025-04-03