
方差分析--T检验和F检验的异同
最近在图书馆借了本《R和ASReml-R统计分析教程》,林元震和陈晓阳主编的关于R的书籍,当时看上这本书的原因在于里面以统计学知识为主,作为R语言实战的良好补充,虽然R语言实战是一本相当详实的介绍R语言的书,但是其中的统计学原理往往一笔带过(虽然本书也不是很详尽),但是作为一个数据分析从业人员,我感觉对于很多统计理论,达到可以讲明白原理和逻辑就可以,具体的计算过程和推导反而在其次,而最重要的是在什么情况下应用什么算法和模型,这才是最关键的。
这篇博客分享下对方差分析的理解。
其实在之前的文章中,对t检验相关说明比较多,而方差分析和t检验方法的功效和作用非常相近,网上对此也不是很详尽,下面首先说说我的理解。
这里说的t检验是双样本t,也就是两组数,看这两组数据对应的总体差异;方差检验也是看两组(及以上)的数据见有没有差异,那么其实二者是不是一样呢?
其实在某种程度是一样的。下面的情况分为两个维度:检验的组数和组内方差
情况1:仅有两组,且组内方差相等
在这种情况下,t检验和F检验相等
我们看下F检验的原理,F检验是看F分布,而F value是SSB/SSW,关于SSB和SSW可以参考可汗学院有一节专门讲组间平方和(SSB)和组内平方和(SSW),如果我们把组间平方和理解为两组之间的差异,组内平方和理解为两组内部不同数据的差异的话,那么简单点说,两个数据在有差异的前提下,究竟是组间的差异大,还是组内的差异大呢?如果是组间的差异大,那么这两组数据本身不一致的概率就非常大了,对应F值比较大;
那么看看两组的t检验,t检验的前提是两组数据都是从不同样本抽出的数据,而样本都符合正态分布,然后用这两个样本推断这两个总体存不存在差异;举个例子,我有一缸黑米,和一缸白米,为了看这两缸米的密度有没有差异,用小勺各盛了十次,观察密度,然后用小勺的十次,去判定总体的差异;如果想用t检验,前提假设是由于随机误差,两缸米在抽取的时候密度会有随机误差,那么每次抽取的密度都呈现正态分布,还有一个假设,就是两个勺子盛的米离散程度是相等的,也就是方差相等。所以,在方差相等,或者说方差齐的前提是t检验的必要前提。而F检验不要求方差齐,或者说本身就是检查方差的差异的。
按照之前的定义,如果两组方差齐,由于F检验的F值是SSB/SSW,组内方差相等,如果两组有变异,那么全部都是由于组间差异造成的,F检验自然成了t检验,下面附上F检验和t检验的代码和结果(数据参考了《R和ASReml-R统计分析教程》中的数据):
weight<-scan()
16.68 20.67 18.42 18 17.44 15.95 18.68 23.22 21.42 19 18.92 NA
V<-rep(c('LY1','DXY'),rep(6,2))
df<-data.frame(V,weight)
a<-subset(df$weight,V=='LY1')
b<-subset(df$weight,V=='DXY')
var.test(a,b)
t.test(a,b,var.equal=T,paired = F)
t检验的结果是:
Two Sample t-test
data: a and b
t = -2.1808, df = 9, p-value = 0.0571
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
-4.86513222 0.08913222
sample estimates:
mean of x mean of y
17.860 20.248
F检验:
fit<-aov(weight~V,data=df)
summary(fit)
结果:
Df Sum Sq Mean Sq F value Pr(>F)
V 1 15.55 15.55 4.756 0.0571 .
Residuals 9 29.43 3.27
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
1 observation deleted due to missingness
可以看到p值都是0.0571,相等,因为前提是在t检验中加入了var.test,然后设置参数var.equal=T。下面看看方差不等的情况:
情况2,两组数据,方差不齐
在这种情况下,如果忽略了方差齐的前提,比如我重新做一组数据,先检测防擦:
weight<-scan()
16.68 20.67 18.42 18 17.44 30 18.68 23.22 21.42 19 18.92 82
V<-rep(c('LY1','DXY'),rep(6,2))
df<-data.frame(V,weight)
a<-subset(df$weight,V=='LY1')
b<-subset(df$weight,V=='DXY')
var.test(a,b)
看到检测结果:
F test to compare two variances
data: a and b
F = 0.038913, num df = 5, denom df = 5, p-value = 0.002832
alternative hypothesis: true ratio of variances is not equal to 1
95 percent confidence interval:
0.005445095 0.278085194
sample estimates:
ratio of variances
0.03891273
p为0.002832,所以方差不齐;
但是然后我们进行方差齐的t检验:
t.test(a,b,var.equal=T,paired = F)
Two Sample t-test
data: a and b
t = -0.98304, df = 10, p-value = 0.3488
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
-33.77097 13.09431
sample estimates:
mean of x mean of y
20.20167 30.54000
看到两组均值相等的概率好大;
方差不齐调整后的t检验:
t.test(a,b,var.equal=F,paired = F)
Welch Two Sample t-test
data: a and b
t = -0.98304, df = 5.3885, p-value = 0.3676
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
-36.79643 16.11976
sample estimates:
mean of x mean of y
20.20167 30.54000
P值是0.3676 稍微比之前大一些;
F检验:
fit<-aov(weight~V,data=df)
summary(fit)
Df Sum Sq Mean Sq F value Pr(>F)
V 1 321 320.6 0.966 0.349
Residuals 10 3318 331.8
p是0.349;这和t检验在方差齐的前提下是相等的。
我理解是这样的:
t检验的前提是方差齐,只有方差齐了,t检验的结果才反应两组数据的是否有差异,否则如果方差不齐的话,会把组内的差异也考虑进去,所以判定的概率就更宽松;而F检验其实就是看组间差异和组内差异的比较,所以本质上和t检验方差齐的概念相似。但是实际上在方差不齐的时候是无法进行t检验的,结果不具有统计学意义。
情况3&4:多组情况下,方差齐&多组方差不齐
t检验一般适用于两组,所以在多维的情况下,不适用t检验,而F检验可以判定多组、一组多变量和多组间有交互(单因素、协方差、双因素无重复、双因素有重复等),然后在通过两两比较进行分析,用duncan和tukey等方法去判定。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22在企业数据分析中,“数据孤岛” 是制约分析深度的核心瓶颈 —— 用户数据散落在注册系统、APP 日志、客服记录中,订单数据分散 ...
2025-10-22在神经网络设计中,“隐藏层个数” 是决定模型能力的关键参数 —— 太少会导致 “欠拟合”(模型无法捕捉复杂数据规律,如用单隐 ...
2025-10-21在特征工程流程中,“单变量筛选” 是承上启下的关键步骤 —— 它通过分析单个特征与目标变量的关联强度,剔除无意义、冗余的特 ...
2025-10-21在数据分析全流程中,“数据读取” 常被误解为 “简单的文件打开”—— 双击 Excel、执行基础 SQL 查询即可完成。但对 CDA(Cert ...
2025-10-21在实际业务数据分析中,我们遇到的大多数数据并非理想的正态分布 —— 电商平台的用户消费金额(少数用户单次消费上万元,多数集 ...
2025-10-20在数字化交互中,用户的每一次操作 —— 从电商平台的 “浏览商品→加入购物车→查看评价→放弃下单”,到内容 APP 的 “点击短 ...
2025-10-20在数据分析的全流程中,“数据采集” 是最基础也最关键的环节 —— 如同烹饪前需备好新鲜食材,若采集的数据不完整、不准确或不 ...
2025-10-20在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15