spss-数据抽取-拆分与合并 数据抽取也成为数据拆分,是指保留、抽取原数据表中某些字段、记录的部分信息,形成一个新字段、新纪录。分为:字段拆分和随机抽样两种方法。 一:字段拆分 如何提取“身份证号 ...
2017-10-20SPSS统计:单因素方差分析与单变量方差分析 在spss统计分析中,方差分析在比较均值菜单和一般线性模型菜单中都可以做,单因素方差分析一般称为单因素Anova分析,单变量方差分析一般称为一般线性模型单变量分析。 ...
2017-10-19SPSS统计分析案例:误差条图 条形图太常见了吧,随意打开一份数据分析报告,一定会看到条形图或者柱形图,信息传达的到位,直观明了。 ↑上面这个条图,竖条的高矮由平均值的大小决定,直观的展现了不同 ...
2017-10-19互联网之道,看电商的数据化管理方案 关于数据化管理。我们可以将该模块的数据工作分成两个部分,一是通过数据来辅助日常工作,让日常工作中的选择判断更加规范,这是用数据来做事的。另一个是通过数据来评价工 ...
2017-10-19python 生成不重复的随机数的代码 用的是筛选法,网上有解释,简单的说 就是先随机生成一串数字,之后用下标来判断这些数字有没有重复,重复的就筛去 代码如下: import random print \'N must >K else error ...
2017-10-19Python生成随机数的方法 如果你对在Python生成随机数与random模块中最常用的几个函数的关系与不懂之处,下面的文章就是对Python生成随机数与random模块中最常用的几个函数的关系,希望你会有所收获,以下就是这 ...
2017-10-19Python合并字典键值并去除重复元素的实例 假设在python中有一字典如下: x={‘a\':\'1,2,3\', ‘b\':\'2,3,4\'} 需要合并为: x={‘c\':\'1,2,3,4\'} 需要做到三件事: 1. 将字符串转化为数值列表 ...
2017-10-19数据化管理在餐饮业中的应用 一、为什么要重视数据化运营和管理? “从经营到管理,管理方向需要数据灯塔” 餐饮市场和社会各业具有相似之处,也有很明确的本质不同。 1、首先,餐饮市 ...
2017-10-18年薪50万的大数据分析师养成记 以下是一位在数据分析领域打滚了N年后的分析师写下的一些总结和体会大家可以借鉴学习! 一、成为数据分析师有哪些要求? 1、理论知识要宽泛,涉及数学、市场和技术。要 ...
2017-10-18如何对业务场景做数据分析 企业的数据分析是个很复杂的工程,需要业务和分析技术两块知识。这里从业务的角度切入,谈谈如何对业务分析,文章参考帆软软件的零售业数据管理方案。 首先,企业的分析主要分为管 ...
2017-10-18信用卡年轻消费群体数据分析和洞察报告 信用卡年轻人群,是消费金融的主流人群,针对他们的数据分析和洞察让我们信贷业务决策更科学。 数据分析和洞察报告背景 为什么会做这样的报告?我们调研主流金融 ...
2017-10-184个关键,如何清晰的做好数据分析 数据分析就近几年看来,越来越有一种像通用技能发展的趋势,从生产、研发、市场、销售到运营,多多少会存在数据分析的需求。 关于数据分析,网络上有不少分析报告案例,但 ...
2017-10-18数据工作的本质:从业务中来,到业务中去 数据工作就组成结构和流程来说还是比较简单的,因为这个工作本来就很年轻,分工还没有很细。总体来讲,我把数据工作看成相互连接的三部分:取数、理数、用数,这是一个 ...
2017-10-17做运营必须掌握的四个数据分析思维 对于运营数据分析,我相信很多小伙伴会存在以下问题: 面对异常数据经常出现“好像做了什么?好像发生了什么?所以可能造成了影响”的主观臆测? 面对数据报表,不知道 ...
2017-10-17python通过post提交数据的方法 本文实例讲述了python通过post提交数据的方法。分享给大家供大家参考。 具体实现方法如下: # -*- coding: cp936 -*- import urllib2 import urllib def postHttp(name=N ...
2017-10-17Python中使用hashlib模块处理算法的教程 Python的hashlib提供了常见的摘要算法,如MD5,SHA1等等。 什么是摘要算法呢?摘要算法又称哈希算法、散列算法。它通过一个函数,把任意长度的数据转换为一个长度固 ...
2017-10-17人群识别的常见错误,一种方法就可避免 一般说来,商家在进行决策时,尤其是在进行市场细分决策时,往往会看到这样的描述:某高端女性护肤品牌A的目标消费群体是一二线城市,年龄在30-40岁间,高消费档次的女性 ...
2017-10-16最全的运营数据指标解读 数据分析涉及不同的业务领域,很多时候,业务的了解比数据技巧更重要。很多新人常问Python、SQL,但鲜有问业务,可后者才决定分析的成败。 业务的洞悉决定了数据分析师发展的上限, ...
2017-10-16PyChar学习教程之自定义文件与代码模板详解 pycharm默认的【新建】文件,格式很不友好,那么就需要改一下文件模板。下面这篇文章主要给大家介绍了关于PyChar学习教程之自定义文件与代码模板的相关资料,文中通 ...
2017-10-16关于推荐算法的一些思考 最近做了一个交叉销售的项目,梳理了一些关键点,分享如下,希望对大家有所启发 核心目标:在有限资源下,尽可能的提供高转化率的用户群,辅助业务增长 初步效果:商家ROI值为50 ...
2017-10-16t 检验与 Wilcoxon 检验:数据差异比较的两大统计利器 在数据分析中,“比较差异” 是核心需求之一 —— 如新药疗效是否优于旧药 ...
2025-08-26季节性分解外推法:解锁时间序列预测的规律密码 在商业决策、资源调度、政策制定等领域,准确的预测是规避风险、提升效率的关键 ...
2025-08-26CDA 数据分析师:数据治理驱动下的企业数据价值守护者 在数字经济时代,数据已成为企业核心战略资产,其价值的释放离不开高 ...
2025-08-26基于 SPSS 的 ROC 曲线平滑调整方法与实践指南 摘要 受试者工作特征曲线(ROC 曲线)是评估诊断模型或预测指标效能的核心工具, ...
2025-08-25神经网络隐藏层神经元个数的确定方法与实践 摘要 在神经网络模型设计中,隐藏层神经元个数的确定是影响模型性能、训练效率与泛 ...
2025-08-25CDA 数据分析师与数据思维:驱动企业管理升级的核心力量 在数字化浪潮席卷全球的当下,数据已成为企业继人力、物力、财力之后的 ...
2025-08-25CDA数据分析师与数据指标:基础概念与协同逻辑 一、CDA 数据分析师:数据驱动时代的核心角色 1.1 定义与行业价值 CDA(Certified ...
2025-08-22Power Query 移动加权平均计算 Power Query 移动加权平均设置全解析:从原理到实战 一、移动加权平均法的核心逻辑 移动加权平均 ...
2025-08-22描述性统计:CDA数据分析师的基础核心与实践应用 一、描述性统计的定位:CDA 认证的 “入门基石” 在 CDA(Certified Data Analy ...
2025-08-22基于 Python response.text 的科技新闻数据清洗去噪实践 在通过 Python requests 库的 response.text 获取 API 数据后,原始数据 ...
2025-08-21基于 Python response.text 的科技新闻综述 在 Python 网络爬虫与 API 调用场景中,response.text 是 requests 库发起请求后获取 ...
2025-08-21数据治理新浪潮:CDA 数据分析师的战略价值与驱动逻辑 一、数据治理的多维驱动引擎 在数字经济与人工智能深度融合的时代,数据治 ...
2025-08-21Power BI 热力地图制作指南:从数据准备到实战分析 在数据可视化领域,热力地图凭借 “直观呈现数据密度与分布趋势” 的核心优势 ...
2025-08-20PyTorch 矩阵运算加速库:从原理到实践的全面解析 在深度学习领域,矩阵运算堪称 “计算基石”。无论是卷积神经网络(CNN)中的 ...
2025-08-20数据建模:CDA 数据分析师的核心驱动力 在数字经济浪潮中,数据已成为企业决策的核心资产。CDA(Certified Data Analyst)数据分 ...
2025-08-20KS 曲线不光滑:模型评估的隐形陷阱,从原因到破局的全指南 在分类模型(如风控违约预测、电商用户流失预警、医疗疾病诊断)的评 ...
2025-08-20偏态分布:揭开数据背后的非对称真相,赋能精准决策 在数据分析的世界里,“正态分布” 常被视为 “理想模型”—— 数据围绕均值 ...
2025-08-19CDA 数据分析师:数字化时代的价值创造者与决策智囊 在数据洪流席卷全球的今天,“数据驱动” 已从企业战略口号落地为核心 ...
2025-08-19CDA 数据分析师:善用 Power BI 索引列,提升数据处理与分析效率 在 Power BI 数据分析流程中,“数据准备” 是决定后续分析质量 ...
2025-08-18CDA 数据分析师:巧用 SQL 多个聚合函数,解锁数据多维洞察 在企业数据分析场景中,单一维度的统计(如 “总销售额”“用户总数 ...
2025-08-18