
在数据分析的众多方法中,Mann-Kendall(MK)检验凭借其对数据分布无严格要求、能有效识别数据趋势与突变点的特性,成为环境科学、气象学、经济学等领域的重要分析工具。而借助 SPSS 这一功能强大的统计分析软件,MK 检验的操作变得更加便捷高效。接下来,我们将深入探讨 SPSS 中 MK 检验的原理、操作步骤、实际应用以及相关注意事项。
Mann-Kendall 检验是一种非参数统计检验方法,它不依赖于数据的具体分布形式,适用于各种类型的数据,包括不满足正态分布的数据。该检验主要用于分析时间序列数据的趋势变化以及检测数据序列中的突变点。
其核心思想基于数据的秩次关系。在时间序列x1,x2,...,xn中,对于任意两个数据点xi和xj(i<j),若i<xj,则记为1;若i>xj,则记为−1;若i=xj,则记为0。通过计算这些秩次关系的统计量,构建检验统计量Z,并与给定的显著性水平(如 0.05)下的临界值进行比较,判断数据是否存在显著趋势。若∣Z∣>Zα/2,则拒绝原假设,认为数据存在显著趋势;若∣Z∣≤Zα/2,则接受原假设,认为数据不存在显著趋势。
在突变点检测方面,通过构建正序列和逆序列的统计量曲线,观察两条曲线的交点,交点对应的时间点即为可能的突变点。
数据准备:将时间序列数据导入 SPSS 软件中,确保数据包含时间变量和对应的观测变量,且数据排列整齐,无缺失值或异常值干扰(如有缺失值,需提前进行合理处理,如删除缺失行或使用插补法填充)。
选择分析方法:在 SPSS 菜单栏中依次点击 “分析” - “非参数检验” - “旧对话框” - “趋势”,打开趋势分析对话框。
变量设置:将观测变量选入 “检验变量列表”,将时间变量选入 “分组变量”,并定义分组变量的范围(如时间序列的起始和结束时间)。
检验选项设置:在 “检验类型” 中选择 “Kendall 的协同系数”(此选项可用于趋势分析),若要进行突变点检测,还需在后续通过编程或特定插件辅助完成。
运行分析:点击 “确定” 按钮,SPSS 将自动计算相关统计量并输出分析结果。结果中主要关注的指标是检验统计量Z值及其对应的显著性水平p值,若p<0.05,则表明数据存在显著趋势。
以某地区近 30 年的年降水量数据为例,利用 SPSS 进行 Mann-Kendall 检验。将年降水量数据录入 SPSS 后,按照上述操作步骤进行分析,得到检验统计量Z=−2.35,显著性水平p=0.019<0.05,这表明该地区近 30 年的年降水量呈现显著的下降趋势。
进一步结合突变点检测(可借助 Python 与 SPSS 联动或其他扩展插件实现),发现降水量在第 15 年左右出现明显突变,降水量下降趋势在此之后更为显著。这一结果为当地水资源管理、农业生产规划等提供了重要的决策依据,例如相关部门可以提前制定节水措施,调整农作物种植结构以应对降水量减少的情况。
优势 对数据分布要求宽松:无需数据满足正态分布等特定条件,适用于各种类型的时间序列数据,在处理现实中复杂多变的数据时具有很强的适应性。
趋势和突变点检测能力强:不仅能够准确判断数据的趋势方向(上升、下降或无趋势),还能有效检测数据序列中的突变点,帮助我们深入了解数据的变化特征。
计算相对简单:相较于一些复杂的参数检验方法,Mann-Kendall 检验的计算过程相对简单,在 SPSS 等软件的辅助下,操作便捷高效。
局限性
对微弱趋势的敏感性不足:当数据中的趋势较为微弱时,Mann-Kendall 检验可能无法准确识别,容易出现漏判的情况。
突变点检测的辅助需求:在 SPSS 原生功能中,突变点检测的操作相对复杂,通常需要借助其他工具或编程辅助完成,增加了分析的难度和门槛。
无法确定趋势的具体函数形式:该检验只能判断数据是否存在趋势以及趋势的方向,无法给出趋势变化的具体函数表达式,不利于对数据变化进行精确建模。
Mann-Kendall 检验在 SPSS 中的应用为我们分析数据的趋势和突变提供了有力的工具。通过掌握其原理、熟练操作步骤,并结合实际案例进行分析,我们能够更好地利用这一方法挖掘数据背后的信息,为各领域的研究和决策提供科学依据。同时,我们也应清楚认识到其局限性,合理选择和结合其他分析方法,以获得更全面、准确的分析结果。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
本次活动市场价2000元,现面向会员免费开放,会员朋友更可以邀请一位非会员免费参加。 【活动目标】 ...
2025-08-04MySQL 统计连续每天数据:从业务需求到技术实现 在数据分析场景中,连续日期的数据统计是衡量业务连续性的重要手段 —— 无论是 ...
2025-08-04反向传播神经网络:突破传统算法瓶颈的革命性力量 在人工智能发展的历史长河中,传统算法曾长期主导着数据处理与模式识别领域 ...
2025-08-04CDA 数据分析师行业标准:构建数据人才的能力坐标系 在数据驱动决策成为企业核心竞争力的时代,CDA(数据分析师)行业标准作为 ...
2025-08-04评判两组数据与初始数据准确值的方法 在数据分析与研究中,我们常常会面临这样的情况:需要对通过不同方法、不同过程得到的两组 ...
2025-08-01通过 COX 回归模型诊断异常值 一、COX 回归模型概述 COX 回归模型,又称比例风险回归模型,是一种用于生存分析的统计方法。它能 ...
2025-08-01CDA 数据分析师报考条件详解:迈向专业认证的指南 在数据分析行业蓬勃发展的当下,CDA 数据分析师认证成为众多从业者提升专业 ...
2025-08-01K-S 曲线、回归与分类:数据分析中的重要工具 在数据分析与机器学习领域,K-S 曲线、回归和分类是三个核心概念与工具,它们各 ...
2025-07-31大数据时代对定性分析的影响 在大数据时代,海量、多样、高速且低价值密度的数据充斥着我们的生活与工作。而定性分析作为一 ...
2025-07-31CDA含金量分析 在数字经济与人工智能深度融合的时代,数据驱动决策已成为企业核心竞争力的关键要素。CDA(Certified Data Analys ...
2025-07-31SASEM 决策树:理论与实践应用 在复杂的决策场景中,如何从海量数据中提取有效信息并制定科学决策,是各界关注的焦点。SASEM 决 ...
2025-07-30SPSS 语法使用详解 在当今数据驱动的时代,SPSS( Statistical Package for the Social Sciences)作为一款功能强大的统计分析软 ...
2025-07-30人工智能对CDA数据分析领域的影响 人工智能对 CDA(Certified Data Analyst,注册数据分析师)数据分析领域的影响是全方位、多层 ...
2025-07-30MySQL执行计划中rows的计算逻辑:从原理到实践 MySQL 执行计划中 rows 的计算逻辑:从原理到实践 在 MySQL 数据库的查询优化中 ...
2025-07-29左偏态分布转正态分布:方法、原理与实践 左偏态分布转正态分布:方法、原理与实践 在统计分析、数据建模和科学研究中,正态分 ...
2025-07-29CDA 数据分析师的职业生涯规划:从入门到卓越的成长之路 在数字经济蓬勃发展的当下,数据已成为企业核心竞争力的重要来源,而 CD ...
2025-07-29CDA数据分析师证书考取全攻略 一、了解 CDA 数据分析师认证 CDA 数据分析师认证是一套科学化、专业化、国际化的人才考核标准, ...
2025-07-29解析神经网络中 Softmax 函数的核心作用 在神经网络的发展历程中,激活函数扮演着至关重要的角色,它们为网络赋予了非线性能力, ...
2025-07-29解析 response.text 与 response.content 的核心区别 在网络数据请求与处理的场景中,开发者经常需要从服务器返回的响应中提取数 ...
2025-07-29鸢尾花判别分析:机器学习中的经典实践案例 在机器学习的世界里,有一个经典的数据集如同引路明灯,为无数初学者打开了模式识别 ...
2025-07-29