京公网安备 11010802034615号
经营许可证编号:京B2-20210330
【新智元导读】最近,来自NUS、UT Austin等机构的研究人员创新性地提出了一种「拖拽式大语言模型」(DnD),它可以基于提示词快速生成模型参数,无需微调就能适应任务。不仅效率最高提升12000倍,而且具备出色的零样本泛化能力。
现在的大模型基本都具备零样本泛化能力,但要在真实场景中做特定的适配,还是得花好几个小时来对模型进行微调。
即便是像LoRA这样的参数高效方法,也只能缓解而不能消除每个任务所需的微调成本。
刚刚,包括尤洋教授在内的来自新加坡国立大学、得克萨斯大学奥斯汀分校等机构的研究人员,提出了一种全新的「拖拽式大语言模型」——Drag-and-Drop LLMs!

DnD是一种基于提示词的参数生成器,能够对LLM进行无需训练的自适应微调。
通过一个轻量级文本编码器与一个级联超卷积解码器的组合,DnD能在数秒内,仅根据无标签的任务提示词,生成针对该任务的LoRA权重矩阵。
显然,对于那些需要快速实现模型专业化的场景,DnD可以提供一种相较于传统微调方法更强大、灵活且高效的替代方案。


通过观察,研究人员发现,LoRA适配器无非是其训练数据的一个函数:梯度下降会将基础权重「拖拽」至一个特定任务的最优状态。
如果能够直接学习从提示到权重的映射,那么就可以完全绕过梯度下降过程。

DnD通过两个核心步骤获得「拖拽」能力:准备训练数据(左上)与训练参数生成器(右上)。
在准备数据时,将模型参数(权重)与特定数据集的条件(提示词)进行显式配对。 在训练时,DnD模型将条件作为输入来生成参数,并使用原始的LoRA参数作为监督信号进行学习。 基于这些洞见,团队提出了「拖拽式大语言模型」,它无需微调即可生成任务专属的权重。
团队首先在多个不同数据集上分别训练并保存相应的LoRA适配器。
为了赋予模型「拖拽」的能力,团队将这些数据集的提示词与收集到的LoRA权重进行随机配对,构成DnD模型的训练数据——即「提示词-参数」对。
参数生成器是一个由级联卷积块构成的解码器。
参数生成器的模块细节如下:每个超卷积块包含三个超卷积模块,用于在不同维度上提取并融合特征信息。

训练时,团队采用一个现成的文本编码器提取提示词的嵌入向量,并将其输入生成器。
生成器会预测出模型权重,团队利用其与真实LoRA权重之间的均方误差(MSE)损失来对其进行优化。

在推理阶段,团队只需将来自全新数据集(训练中未见过)的提示词输入DnD,仅需一次前向传播,即可获得为该任务量身定制的参数。


零样本学习效果
在新的(测试)数据集上的泛化能力。
在所有未曾见过的数据集上,DnD在准确率上都显著超越了那些用于训练的LoRA模型。

DnD能为数学、代码和多模态问答等更复杂的任务生成参数。
在这些任务上依然展现出强大的零样本学习能力。


DnD在多种任务上超越了基座LLM,展现出显著的「拖拽」增强效果。

DnD能够很好地扩展至更大的7B基座模型,并在更复杂的LiveCodeBench基准测试中保持强劲性能。
通过利用已微调的LoRA作为训练数据,DnD成功地在输入提示词与模型参数之间建立了联系。
团队向DnD输入其训练阶段从未见过的数据集提示词,让它为这些新任务直接生成参数,以此来检验其零样本学习能力。
DnD在权重空间中生成的参数与原始参数分布接近,并且在性能上表现良好。

实验结果表明,在零样本测试集上,团队的方法相较于训练所用的LoRA模型的平均性能,取得了惊人的提升,并且能够很好地泛化到多种真实世界任务和不同尺寸的LLM。
为了进一步展示DnD的强大能力,团队将其与全量样本微调(full-shot tuning)、少样本学习(few-shot)以及上下文学习(in-context learning)进行了对比。
令人惊讶的是,DnD的性能超越了LoRA全量微调的效果,同时速度快了2500倍。
虽然经过更多轮次的迭代,全量微调的性能会超过DnD,但其代价是高达12000倍的推理延迟。
此外,在样本数少于256个时,DnD的性能稳定地优于少样本学习和上下文学习。
尤其值得注意的是,少样本学习和上下文学习都需要依赖带标签的答案,而DnD仅仅需要无标签的提示词。

DnD能够达到与全量样本相当甚至更优的性能,同时速度提高了2500-12000倍
免费加入阅读:https://edu.cda.cn/goods/show/3151?targetId=5147&preview=0
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在pandas数据处理工作流中,“列标签”(Column Labels)是连接数据与操作的核心桥梁——它不仅是DataFrame数据结构的“索引标识 ...
2025-11-25Anaconda作为数据科学领域的“瑞士军刀”,集成了Python解释器、conda包管理工具及海量科学计算库,是科研人员、开发者的必备工 ...
2025-11-25在CDA(Certified Data Analyst)数据分析师的日常工作中,表格结构数据是最常接触的“数据形态”——从CRM系统导出的用户信息表 ...
2025-11-25在大数据营销从“粗放投放”向“精准运营”转型的过程中,企业常面临“数据维度繁杂,核心影响因素模糊”的困境——动辄上百个用 ...
2025-11-24当流量红利逐渐消退,“精准触达、高效转化、长效留存”成为企业营销的核心命题。大数据技术的突破,让营销从“广撒网”的粗放模 ...
2025-11-24在商业数据分析的全链路中,报告呈现是CDA(Certified Data Analyst)数据分析师传递价值的“最后一公里”,也是最容易被忽视的 ...
2025-11-24在数据可视化实践中,数据系列与数据标签的混淆是导致图表失效的高频问题——将数据标签的样式调整等同于数据系列的维度优化,或 ...
2025-11-21在数据可视化领域,“静态报表无法展现数据的时间变化与维度关联”是长期痛点——当业务人员需要分析“不同年份的区域销售趋势” ...
2025-11-21在企业战略决策的场景中,“PESTEL分析”“波特五力模型”等经典方法常被提及,但很多时候却陷入“定性描述多、数据支撑少”的困 ...
2025-11-21在企业数字化转型过程中,“业务模型”与“数据模型”常被同时提及,却也频繁被混淆——业务团队口中的“用户增长模型”聚焦“如 ...
2025-11-20在游戏行业“高获客成本、低留存率”的痛点下,“提前预测用户流失并精准召回”成为运营核心命题。而用户流失并非突发行为——从 ...
2025-11-20在商业数据分析领域,“懂理论、会工具”只是入门门槛,真正的核心竞争力在于“实践落地能力”——很多分析师能写出规范的SQL、 ...
2025-11-20在数据可视化领域,树状图(Tree Diagram)是呈现层级结构数据的核心工具——无论是电商商品分类、企业组织架构,还是数据挖掘中 ...
2025-11-17核心结论:“分析前一天浏览与第二天下单的概率提升”属于数据挖掘中的关联规则挖掘(含序列模式挖掘) 技术——它聚焦“时间序 ...
2025-11-17在数据驱动成为企业核心竞争力的今天,很多企业陷入“数据多但用不好”的困境:营销部门要做用户转化分析却拿不到精准数据,运营 ...
2025-11-17在使用Excel透视表进行数据汇总分析时,我们常遇到“需通过两个字段相乘得到关键指标”的场景——比如“单价×数量=金额”“销量 ...
2025-11-14在测试环境搭建、数据验证等场景中,经常需要将UAT(用户验收测试)环境的表数据同步到SIT(系统集成测试)环境,且两者表结构完 ...
2025-11-14在数据驱动的企业中,常有这样的困境:分析师提交的“万字数据报告”被束之高阁,而一张简洁的“复购率趋势图+核心策略标注”却 ...
2025-11-14在实证研究中,层次回归分析是探究“不同变量组对因变量的增量解释力”的核心方法——通过分步骤引入自变量(如先引入人口统计学 ...
2025-11-13在实时数据分析、实时业务监控等场景中,“数据新鲜度”直接决定业务价值——当电商平台需要实时统计秒杀订单量、金融系统需要实 ...
2025-11-13