
SPSS复杂样本:复杂样本统计过程
一、复杂样本频率(分析-复杂抽样-频率)
“复杂样本频率”过程可以为所选变量生成频率表并显示单变量统计。您还可以按子组请求统计量,子组由一个或多个分类变量定义。
1、示例。使用“复杂样本频率”过程,基于全美国健康访问调查(NHIS)的结果和这一公用数据的适当分析计划,可以获得美国公民维生素使用情况的单变量制表统计量。
2、统计量。该过程生成单元总体大小和表百分比的估计值,以及每个估计值的标准误、置信区间、变异系数、设计效果、设计效果平方根、累计值和未加权的计数。此外,还计算等单元比例检验的卡方和似然比统计量。
3、数据。要为其生成频率表的变量应为分类变量。子体变量可以是字符串或数值,但应该是分类变量。
4、假设。数据文件中的个案代表来自复杂设计的一个样本,该样本应根据在“复杂样本计划”对话框中所选文件内的指定项进行分析。
二、复杂样本描述(分析-复杂抽样-描述)
“复杂样本描述”过程为多个变量显示单变量摘要统计量。您还可以按子组请求统计量,子组由一个或多个分类变量定义。
1、示例。使用“复杂样本描述”过程,基于全美国健康访问调查(NHIS)的结果和这一公用数据的适当分析计划,可以获得美国公民活动水平的单变量描述统计量。
2、统计量。该过程生成均值和总和,以及每个估计值的t检验、标准误、置信区间、变异系数、未加权的计数、总体大小、设计效果和设计效果平方根。
3、数据。测量应为尺度变量。子体变量可以是字符串或数值,但应该是分类变量。
4、假设。数据文件中的个案代表来自复杂设计的一个样本,该样本应根据在“复杂样本计划”对话框中所选文件内的指定项进行分析。
复杂样本交叉表过程可以为所选变量对生成交叉表并显示二阶统计量。您还可以按子组请求统计量,子组由一个或多个分类变量定义。
1、示例。使用“复杂样本交叉表”过程,基于全美国健康访问调查(NHIS)的结果和这一公用数据的适当分析计划,可以获得美国公民维生素使用量和抽烟频率的交叉分类统计量。
2、统计量。该过程生成单元格总体大小、行百分比、列百分比和表百分比的估计值,以及每个估计值的标准误、置信区间、变异系数、期望值、设计效果、设计效果平方根、残差、调整的残差和未加权的计数。计算几率比、相对风险和危险度差值以在2x2表中使用。此外,还计算Pearson和似然比统计量用于行变量和列变量的独立性检验。
3、数据。行变量和列变量应是分类变量。子体变量可以是字符串或数值,但应该是分类变量。
4、假设。数据文件中的个案代表来自复杂设计的一个样本,该样本应根据在“复杂样本计划”对话框中所选文件内的指定项进行分析。
四、复杂样本比率(分析-复杂抽样-比率)
“复杂样本比率”过程显示变量的比率的单变量摘要统计。您还可以按子组请求统计量,子组由一个或多个分类变量定义。
1、示例。使用“复杂样本比率”过程,基于全国范围调查(根据一项复杂设计并采用适合数据的分析计划进行)的结果,可以获取当前财产价值与上次评估价值的比率的描述统计量。
2、统计量。该过程生成比率估计值、t检验、标准误、置信区间、变异系数、未加权的计数、总体大小、设计效果和设计效果平方根。
3、数据。分子和分母应为正值刻度变量。子体变量可以是字符串或数值,但应该是分类变量。
4、数据文件中的个案代表来自复杂设计的一个样本,该样本应根据在“复杂样本计
划”对话框中所选文件内的指定项进行分析。
五、统计量
1、标准误。估计值的标准误。
2、置信区间。估计值的置信区间,使用指定水平。
3、变异系数。估计值的标准误对估计值的比率。
4、去权重计数。用于计算估计值的单元数。
5、设计效应。估计值的方差与通过假设样本为简单随机样本所获得的方差的比率。这是指定复杂设计的效果测量,该值与1相差越大,表示效果越大。
6、设计效应的平方根。是指定复杂设计的效果的测量值,值与1相差越大表示效果越好。
7、累加值。通过变量的每个值获得的累计估计值。
8、群体大小。总体中估计的单元数。
9、期望值。在假设行变量和列变量独立的条件下,估计值的期望值。
10、残差。如果两个变量之间没有关系,则期望值是期望在单元格中出现的个案数。如果行变量和列变量独立,则正的残差表示单元中的实际个案数多于期望的个案数。
11、调整的残差。单元格的残差(观察值减去期望值)除以其标准误的估计值。生成的标准化残差表示为均值上下的标准差单位。
12、几率比。当因子很少出现时,几率比可用作相对风险的估计值。
13、相对危险度。存在因子出现事件的风险与不存在因子出现事件的风险的比率。
14、危险度差值。存在因子出现事件的风险与不存在因子出现事件的风险之差。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
机器学习解决实际问题的核心关键:从业务到落地的全流程解析 在人工智能技术落地的浪潮中,机器学习作为核心工具,已广泛应用于 ...
2025-09-09SPSS 编码状态区域中 Unicode 的功能与价值解析 在 SPSS(Statistical Product and Service Solutions,统计产品与服务解决方案 ...
2025-09-09CDA 数据分析师:驾驭商业数据分析流程的核心力量 在商业决策从 “经验驱动” 向 “数据驱动” 转型的过程中,商业数据分析总体 ...
2025-09-09R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08在商业竞争日益激烈的当下,“用数据说话” 已从企业的 “加分项” 变为 “生存必需”。然而,零散的数据分析无法持续为业务赋能 ...
2025-09-08随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04CDA 数据分析师:驾驭数据范式,释放数据价值 在数字化转型浪潮席卷全球的当下,数据已成为企业核心生产要素。而 CDA(Certified ...
2025-09-04K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03CDA 数据分析师与数据分析:解锁数据价值的关键 在数字经济高速发展的今天,数据已成为企业核心资产与社会发展的重要驱动力。无 ...
2025-09-03解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02CDA 数据分析师:助力企业破解数据需求与数据分析需求难题 在数字化浪潮席卷全球的当下,数据已成为企业核心战略资产。无论是市 ...
2025-09-02Power BI 度量值实战:基于每月收入与税金占比计算累计税金分摊金额 在企业财务分析中,税金分摊是成本核算与利润统计的核心环节 ...
2025-09-01巧用 ALTER TABLE rent ADD INDEX:租房系统数据库性能优化实践 在租房管理系统中,rent表是核心业务表之一,通常存储租赁订单信 ...
2025-09-01