
数据分析方法(一):对比与对标
对比是数据分析最基本的方法,通过对比识别数据差异。但是对比有得失。在分析过程中,对比得当可获得精准结论,但对比分析也存在陷阱,比如某产品近期销售数据在下滑,想当然得会得出结论此产品受欢迎度在下降,但是查看销售比(销售数/DAU)却在上升,所以只是因为DAU下降了。
所以如何去有效对比?
1、 横向、纵向多维度对比
对比的前提是两个事物或统一个事物的两个状态,其次必须要有一个对比的指标或标准(这里可称为对比的度量)。对比的两事物一个是主体,另一个是客体。也就是明确对比的三要素:主体、客体和度量。比如小明比小王高5cm,就是一个最简单的对比,这里小明是主体,小王是客体,度量身高,且人们对于身高这个度量存有共识。但如果去大排档吃一碗炒饭50元,可能觉得很贵。那如果是取希尔顿吃一碗炒饭128元可能就不觉得贵,这里我们选择了常识作为比较的基准,客体也没有问题,问题在于我们所谓的“常识”并非所有人的“共识”,如果不是共识,就要非常谨慎地得出结论,否则就容易从自我出发做出判断,影响结论的中肯性。
2、建立标准化的对比客体和度量
就是因为标准可以是认为确定的,所以存在质疑和不确定性。
建立标准化的对比可以是时间标准、空间标准、特定标准、计划标准。
3、 比率的对比
常见的对比是大小的对比、数量的对比,比如销售额的对比,人数的对比,使用不同的对比指标会得到不同的结论,我们把对比标准的选择叫做视角,视角不同,结论不同。比如上述对比小明小王俩同学,身高是视角事宜,除此之外还有年龄、学习成绩、颜值等等。在对比各种变化的原因时,我们也有各种模型,我们所要做的就是找到合适的对比视角。
直接描述事物的变量:长度、数量、高度、宽度等
加工后可得到:增速、效率、效益等指标,这才是数据分析时常用的。
如下图的AB公司销售额对比,虽然A公司销售额总体上涨且高于B公司,但是B公司的增速迅猛,高于A公司,即使后期增速下降了,最后的销售额还是赶超。(数据都是笔者瞎编的,工具用的是FineBI)
3、 指标的逻辑与管理指标
数据分析师有一个关键的职能就是要设计“指标”来对比,设计指标和应用指标有着天壤之别。比如某保健品公司,他们的产品是各类补品及奶粉,他们的业务与市场中人口的出生率、老龄化速度、市场整体购买力、对保健品的消费观念有着直接关系,还与政府对这个市场的管控力度有关。分析这么多之后,有没有一个指标来反映这些综合的因素,它的正反代表着好坏。
考虑到以上因素需要构建一个综合性的指标,这需要各种数据的加权计算。在不考虑市场规模的情况才,可以先构建一个指标指数模型:
Y=aX1 + bX2 + cX3 + dX4+……
Y 可定为市场吸引力指标值
X1 可定为老龄化程度
X2 可定为市场整体购买力
X3 可定为市场对保健品的品牌的看法
X4 可定为政府对这个市场的管控力度
abcd是系数,分别代表影响力程度
当然以上只是简单的罗列,实际情况比如X2还能分解出多个影响指标,甚至整体可以换成乘法模型,指数模型。。。
4、 对标的层次和维度
设定了各项管理指标后,剩下的就是比较工作了。从变化到追踪事物变化的诡计,找到问题的根源,从而找到书屋发展规律,这个过程叫对标。对标可以和自己比,也要和别人和竞品比。
对标的维度有规模指标、速度指标、效率指标、效益指标。
规模指标比如营业额、销售额,电商平台的UV、日活,医院的一天接诊数量,年营业收入额;
速度指标往往代表着活力,也是看未来趋势和潜能的重要指标类,包括各种运营管理指标的速度指标。
效率指标即投入和产出比,如果投入的是时间,月度产值、季度产值;如果投入的是净资产、则净资产周转率;如果投入的是人,人均产值,人均销售额。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
Pandas 选取特定值所在行:6 类核心方法与实战指南 在使用 pandas 处理结构化数据时,“选取特定值所在的行” 是最高频的操作之 ...
2025-09-30球面卷积神经网络(SCNN) 为解决这一痛点,球面卷积神经网络(Spherical Convolutional Neural Network, SCNN) 应运而生。它通 ...
2025-09-30在企业日常运营中,“未来会怎样” 是决策者最关心的问题 —— 电商平台想知道 “下月销量能否达标”,金融机构想预判 “下周股 ...
2025-09-30Excel 能做聚类分析吗?基础方法、进阶技巧与场景边界 在数据分析领域,聚类分析是 “无监督学习” 的核心技术 —— 无需预设分 ...
2025-09-29XGBoost 决策树:原理、优化与工业级实战指南 在机器学习领域,决策树因 “可解释性强、处理非线性关系能力突出” 成为基础模型 ...
2025-09-29在标签体系的落地链路中,“设计标签逻辑” 只是第一步,真正让标签从 “纸上定义” 变为 “业务可用资产” 的关键,在于标签加 ...
2025-09-29在使用 Excel 数据透视表进行多维度数据汇总时,折叠功能是梳理数据层级的核心工具 —— 通过点击 “+/-” 符号可展开明细数据或 ...
2025-09-28在使用 Pandas 处理 CSV、TSV 等文本文件时,“引号” 是最容易引发格式混乱的 “隐形杀手”—— 比如字段中包含逗号(如 “北京 ...
2025-09-28在 CDA(Certified Data Analyst)数据分析师的技能工具箱中,数据查询语言(尤其是 SQL)是最基础、也最核心的 “武器”。无论 ...
2025-09-28Cox 模型时间依赖性检验:原理、方法与实战应用 在生存分析领域,Cox 比例风险模型(Cox Proportional Hazards Model)是分析 “ ...
2025-09-26检测因子类型的影响程度大小:评估标准、实战案例与管控策略 在检测分析领域(如环境监测、食品质量检测、工业产品合规性测试) ...
2025-09-26CDA 数据分析师:以数据库为基石,筑牢数据驱动的 “源头防线” 在数据驱动业务的链条中,“数据从哪里来” 是 CDA(Certified D ...
2025-09-26线性相关点分布的四种基本类型:特征、识别与实战应用 在数据分析与统计学中,“线性相关” 是描述两个数值变量间关联趋势的核心 ...
2025-09-25深度神经网络神经元个数确定指南:从原理到实战的科学路径 在深度神经网络(DNN)的设计中,“神经元个数” 是决定模型性能的关 ...
2025-09-25在企业数字化进程中,不少团队陷入 “指标困境”:仪表盘上堆砌着上百个指标,DAU、转化率、营收等数据实时跳动,却无法回答 “ ...
2025-09-25MySQL 服务器内存碎片:成因、检测与内存持续增长的解决策略 在 MySQL 运维中,“内存持续增长” 是常见且隐蔽的性能隐患 —— ...
2025-09-24人工智能重塑工程质量检测:核心应用、技术路径与实践案例 工程质量检测是保障建筑、市政、交通、水利等基础设施安全的 “最后一 ...
2025-09-24CDA 数据分析师:驾驭通用与场景指标,解锁数据驱动的精准路径 在数据驱动业务的实践中,指标是连接数据与决策的核心载体。但并 ...
2025-09-24在数据驱动的业务迭代中,AB 实验系统(负责验证业务优化效果)与业务系统(负责承载用户交互与核心流程)并非独立存在 —— 前 ...
2025-09-23CDA 业务数据分析:6 步闭环,让数据驱动业务落地 在企业数字化转型中,CDA(Certified Data Analyst)数据分析师的核心价值,并 ...
2025-09-23