
SPSS时间序列:频谱分析
一、频谱分析(分析-预测-频谱分析)
“频谱图”过程用于标识时间序列中的周期行为。它不需要分析一个时间点与下一个时间点之间的变异,只要按不同频率的周期性成分分析整体序列的变异。平滑序列在低频率具有更强的周期性成分;而随机变异(“白噪声”)将成分强度分布到所有频率。不能使用该过程分析包含缺失数据的序列。
1、示例。建造新住房的比率是一个国家/地区经济的重要晴雨表。有关住房的数据开始时通常会表现出一个较强的季节性成分。但在估计当前数字时,分析人员需要注意数据中是否呈现了较长的周期。
2、统计量。正弦和余弦变换、周期图值和每个频率或周期成分的谱密度估计。在选择双变量分析时:交叉周期图的实部和虚部、余谱密度、正交谱、增益、平方一致和每个频率或周期成分的相位谱。
3、图。对于单变量和双变量分析:周期图和频谱密度。对于双变量分析:平方一致性、正交谱、交叉振幅、余谱密度、相位谱和增益。
4、数据。变量应为数值型。
5、假设。变量不应包含任何内嵌的缺失数据。要分析的时间序列应该是平稳的,任何
非零均值应该从序列中删除。
平稳.要用ARIMA模型进行拟合的时间序列所必须满足的条件。纯的MA序列是平稳
的,但AR和ARMA序列可能不是。平稳序列的均值和方差不随时间改变。
二、频谱图(分析-预测-频谱分析)
1、选择其中一个“频谱窗口”选项来选择如何平滑周期图,以便获得谱密度估计值。可用的平滑选项有“Tukey-Hamming”、“Tukey”、“Parzen”、“Bartlett”、“Daniell(单元)”和“无”。
1.1、Tukey-Hamming.权重为Wk = .54Dp(2 pi fk) + .23Dp (2 pi fk + pi/p) + .23Dp (2pi fk - pi/p),k = 0, ..., p,其中p是一半跨度的整数部分,Dp是阶数p的Dirichlet内核。
1.2、Tukey.权重为Wk = 0.5Dp(2 pi fk) + 0.25Dp (2 pi fk + pi/p) + 0.25Dp(2 pi fk -pi/p),k = 0, ..., p,其中p是一半跨度的整数部分,Dp是阶数p的Dirichlet内核。
1.3、Parzen.权重为Wk = 1/p(2 + cos(2 pi fk)) (F[p/2] (2 pi fk))**2,k= 0, ... p,其中p是一半跨度的整数部分,而F[p/2]是阶数p/2的Fejer内核。
1.4、Bartlett.谱窗口的形状,窗口上半部分的权重按如下公式计算:Wk = Fp(2*pi*fk),k = 0, ... p,其中p是半跨度的整数部分,Fp是阶数p的Fejer内核。下半部分与上半部分对称。
1.5、Daniell(单元).所有权重均等于1的频谱窗口形状。
1.6、无.无平滑。如果选择了此选项,则频谱密度估计与周期图相同。
2、跨度.一个连续值范围,在该范围上将执行平滑。通常使用奇数。较大的跨度对谱密度图进行的平滑比较小的跨度程度大。
3、变量中心化.调整序列以使在计算谱之前其均值为0,并且移去可能与序列均值关联的较大项。
4、图。周期图和谱密度对单变量分析和双变量分析均可用。其他所有选项仅对双变量分析可用。
4.1、周期图.针对频率或周期绘制的未平滑谱振幅图(绘制在对数刻度中)。低频率变动是平滑序列的特征。均匀地分布在所有频率上的变动则表示“白噪音”。
4.2、平方一致性.两个序列的增益的乘积。
4.3、正交谱.交叉周期图的虚部,是两个时间序列的异相频率成分的相关性的测量。成分的异相为pi/2弧度。
4.4、交叉振幅.余谱密度平方和正交谱平方之和的平方根。
4.5、谱密度.已进行平滑而移去了不规则变动的周期图。
4.6、余谱密度.交叉周期图的实部,是两个时间序列的同相频率分量的相关性的测量。
4.7、相位谱.一个序列的每个频率成分提前或延迟另一个序列的程度的测量。
4.8、增益.用一个序列的谱密度除以跨振幅的商。这两个序列都有自己的获得值。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22在企业数据分析中,“数据孤岛” 是制约分析深度的核心瓶颈 —— 用户数据散落在注册系统、APP 日志、客服记录中,订单数据分散 ...
2025-10-22在神经网络设计中,“隐藏层个数” 是决定模型能力的关键参数 —— 太少会导致 “欠拟合”(模型无法捕捉复杂数据规律,如用单隐 ...
2025-10-21在特征工程流程中,“单变量筛选” 是承上启下的关键步骤 —— 它通过分析单个特征与目标变量的关联强度,剔除无意义、冗余的特 ...
2025-10-21在数据分析全流程中,“数据读取” 常被误解为 “简单的文件打开”—— 双击 Excel、执行基础 SQL 查询即可完成。但对 CDA(Cert ...
2025-10-21在实际业务数据分析中,我们遇到的大多数数据并非理想的正态分布 —— 电商平台的用户消费金额(少数用户单次消费上万元,多数集 ...
2025-10-20在数字化交互中,用户的每一次操作 —— 从电商平台的 “浏览商品→加入购物车→查看评价→放弃下单”,到内容 APP 的 “点击短 ...
2025-10-20在数据分析的全流程中,“数据采集” 是最基础也最关键的环节 —— 如同烹饪前需备好新鲜食材,若采集的数据不完整、不准确或不 ...
2025-10-20在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15