
方差分析:当包含的因子是解释变量时,我们关注的重点通常会从预测转向组别差异的分析,这种分析法称作方差分析(ANOVA)。
install.packages(c('multcomp', 'gplots', 'car', 'HH', 'effects', 'rrcov', 'mvoutlier', 'MASS'))
(1)ANOVA 模型拟合
aov()函数的语法为aov(formula, data = dataframe)
1、仅有一个类别型变量,称为单因素方差分析(one-way ANOVA)
2、每个患者在所有水平下都进行了测量,因此这种统计设计称单因素组内方差分析;又由于每个受试者都不止一次被测量,也称作重复测量方差分析
3、当设计包含两个甚至更多的因子时,便是因素方差分析设计,比如两因子时称作双因素方差分析,三因子时称作三因素方差分析。
4、若因子设计包括组内和组间因子,又称作混合模型方差分析
5、当因变量不止一个时,设计被称作多元方差分析(MANOVA), 若协变量也存在, 那么就叫多元协方差分析MANCOVA。
注意,表达式中变量的顺序很重要
有三种类型的方法可以分解等式右边各效应对y所解释的方差。
类型I(序贯型)
效应根据表达式中先出现的效应做调整。A不做调整,B根据A调整,A:B交互项根据A和
B调整。
类型II(分层型)
效应根据同水平或低水平的效应做调整。A根据B调整,B依据A调整,A:B交互项同时根
据A和B调整。
类型III(边界型)
每个效应根据模型其他各效应做相应调整。A根据B和A:B做调整,A:B交互项根据A和B
调整。
R默认调用类型I方法,其他软件(比如SAS和SPSS)默认调用类型III方法
首先是协变量,然后是主效应,接着是双因素的交互项,再接着是三因素的交互项,以此类推。对于主效应,越基础性的变量越应放在表达式前面。
car包中的Anova()函数(不要与标准anova()函数混淆)提供了使用类型II或类型III方法的选项,而aov()函数使用的是类型I方法。
(2)单因素方差分析
单因素方差分析中,你感兴趣的是比较分类因子定义的两个或多个组别中的因变量均值
library(multcomp)
attach(cholesterol)
table(trt) 样本的数量
1time 2times 4times drugD drugE
10 10 10 10 10
aggregate(response, by = list(trt), FUN = mean) 计算每一个方法的均值
Group.1 x
1 1time 5.78197
2 2times 9.22497
3 4times 12.37478
4 drugD 15.36117
5 drugE 20.94752
aggregate(response, by = list(trt), FUN = sd) 计算每一个方法的标准值
Group.1 x
1 1time 2.878113
2 2times 3.483054
3 4times 2.923119
4 drugD 3.454636
5 drugE 3.345003
fit <- aov(response ~ trt)
summary(fit)
Df Sum Sq Mean Sq F value Pr(>F)
trt 4 1351.4 337.8 32.43 9.82e-13 ***
Residuals 45 468.8 10.4
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
library(gplots)
plotmeans(response ~ trt, xlab = "Treatment", ylab =
"Response",
main = "Mean Plot\nwith 95% CI")
detach(cholesterol)
Tukey HSD的成对组间比较(二二比较)
TukeyHSD(fit)
Fit: aov(formula = response ~ trt)
$trt
diff lwr upr p adj
2times-1time 3.44300 -0.6582817 7.544282 0.1380949
4times-1time 6.59281 2.4915283 10.694092 0.0003542
drugD-1time 9.57920 5.4779183 13.680482 0.0000003
drugE-1time 15.16555 11.0642683 19.266832 0.0000000
4times-2times 3.14981 -0.9514717 7.251092 0.2050382
drugD-2times 6.13620 2.0349183 10.237482 0.0009611
drugE-2times 11.72255 7.6212683 15.823832 0.0000000
drugD-4times 2.98639 -1.1148917 7.087672 0.2512446
drugE-4times 8.57274 4.4714583 12.674022 0.0000037
drugE-drugD 5.58635 1.4850683 9.687632 0.0030633
par(las = 2)
par(mar = c(5, 8, 4, 2))
plot(TukeyHSD(fit))
如果要做单因素的方差分析,因变量要满足正态分布。可以使用QQ图查看。
library(car)
qqPlot(lm(response ~ trt, data = cholesterol), simulate = TRUE, main = "QQ Plot", labels = FALSE)
因变量满足各组方差相等
bartlett.test(response ~ trt, data = cholesterol)
Bartlett test of homogeneity of variances
data: response by trt
Bartlett's K-squared = 0.5797, df = 4, p-value = 0.9653
p-value = 0.9653 越接近1 证明 不同值之间的方差是相等的。
方差齐性分析对离群点非常敏感。可利用car包中的outlierTest()函数来检测离群点:
library(car)
> outlierTest(fit)
No Studentized residuals with Bonferonni p < 0.05
Largest |rstudent|:
rstudent unadjusted p-value Bonferonni p
19 2.251149 0.029422 NA
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08在商业竞争日益激烈的当下,“用数据说话” 已从企业的 “加分项” 变为 “生存必需”。然而,零散的数据分析无法持续为业务赋能 ...
2025-09-08随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04CDA 数据分析师:驾驭数据范式,释放数据价值 在数字化转型浪潮席卷全球的当下,数据已成为企业核心生产要素。而 CDA(Certified ...
2025-09-04K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03CDA 数据分析师与数据分析:解锁数据价值的关键 在数字经济高速发展的今天,数据已成为企业核心资产与社会发展的重要驱动力。无 ...
2025-09-03解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02CDA 数据分析师:助力企业破解数据需求与数据分析需求难题 在数字化浪潮席卷全球的当下,数据已成为企业核心战略资产。无论是市 ...
2025-09-02Power BI 度量值实战:基于每月收入与税金占比计算累计税金分摊金额 在企业财务分析中,税金分摊是成本核算与利润统计的核心环节 ...
2025-09-01巧用 ALTER TABLE rent ADD INDEX:租房系统数据库性能优化实践 在租房管理系统中,rent表是核心业务表之一,通常存储租赁订单信 ...
2025-09-01CDA 数据分析师:企业数字化转型的核心引擎 —— 从能力落地到价值跃迁 当数字化转型从 “选择题” 变为企业生存的 “必答题”, ...
2025-09-01数据清洗工具全景指南:从入门到进阶的实操路径 在数据驱动决策的链条中,“数据清洗” 是决定后续分析与建模有效性的 “第一道 ...
2025-08-29机器学习中的参数优化:以预测结果为核心的闭环调优路径 在机器学习模型落地中,“参数” 是连接 “数据” 与 “预测结果” 的关 ...
2025-08-29