京公网安备 11010802034615号
经营许可证编号:京B2-20210330
SPSS时间序列:拟合优度测量
SPSS时间序列:拟合优度测量
一、拟合优度测量
1、固定的R方.将模型的平稳部分与简单均值模型相比较的测量。当具有趋势或季节性模式时,该度量适用于普通R方。固定的R方可以是负无穷大到1范围中的负值。负值表示考虑中的模型比基线模型差。正值表示考虑中的模型比基线模型好。
2、R方.总变动在由模型解释的序列中的比例估计。当序列很平稳时,此度量最有用。R方可以是负无穷大到1范围中的负值。负值表示考虑中的模型比基线模型差。正值表示考虑中的模型比基线模型好。
3、RMSE.均方根误差。均方误差的平方根。度量因变量序列与其模型预测水平的相差程度,用和因变量序列相同的单位表示。
4、MAPE.平均绝对误差百分比。度量因变量序列与其模型预测水平的相差程度。它与使用的单位无关,因此可用于比较具有不同单位的序列。
5、MAE.平均绝对误差。度量序列与其模型预测水平的差别程度。MAE以原始序列单位报告。
6、MaxAPE.最大绝对误差百分比。最大的预测误差,以百分比表示。该度量对于想象预测的最坏情况方案很有用。
7、MaxAE.最大绝对误差。最大的预测误差,以和因变量序列相同的单位表示。与MaxAPE相同,它对于想象预测的最坏情况方案很有用。最大绝对误差和最大绝对误差百分比可能发生在不同的序列点上,例如,当较大序列的绝对误差比较小值的绝对误差稍微大一些时。在此情况下,最大绝对误差将发生在较大序列值处,而最大绝对误差百分比将发生在较小序列值处。
8、标准化的BIC.标准化的BIC(BIC准则)。尝试代表模型复杂性的模型整体拟合的一般度量。它是基于均方误差的分数,包括模型中参数数量的罚分和序列长度。罚分去除了具有更多参数的模型优势,从而可以容易地比较相同序列的不同模型的统计量。
二、离群值类型
1、可加的.影响单个观察值的离群值。例如,可能将数据编码错误标识为可加离群值。
2、移位水平.从某个特定的序列点开始将所有观察值移动一个常数的离群值。移位水平可能由于策略的更改而造成的。
3、创新的.在某个特定的序列点附加到噪声项的离群值。对于平稳的序列,创新离群值将影响多个观察值。对于不平稳的序列,它可能影响在某个特定的序列点开始的每个观察值。
4、瞬时的.其影响按指数衰减到0的离群值。
5、季节性可加的.一个离群值,它影响特定观察值以及通过一个或多个季节性期间与之分隔的所有后续观察值。该离群值对所有这些观察值具有同等的影响。如果从某年开始,每个一月的销售额都增加,则可能发生季节性可加离群值。
6、局部趋势.从某个特定的序列点开始局部趋势的离群值。
7、可加的修补.由两个或更多连续可加离群值构成的组。选择此离群值类型将导致除了检测可加离群值的变量值组以外,还检测单独的可加离群值。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数字化运营中,“凭感觉做决策” 早已成为过去式 —— 运营指标作为业务增长的 “晴雨表” 与 “导航仪”,直接决定了运营动作 ...
2025-10-24在卷积神经网络(CNN)的训练中,“卷积层(Conv)后是否添加归一化(如 BN、LN)和激活函数(如 ReLU、GELU)” 是每个开发者都 ...
2025-10-24在数据决策链条中,“统计分析” 是挖掘数据规律的核心,“可视化” 是呈现规律的桥梁 ——CDA(Certified Data Analyst)数据分 ...
2025-10-24在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22在企业数据分析中,“数据孤岛” 是制约分析深度的核心瓶颈 —— 用户数据散落在注册系统、APP 日志、客服记录中,订单数据分散 ...
2025-10-22在神经网络设计中,“隐藏层个数” 是决定模型能力的关键参数 —— 太少会导致 “欠拟合”(模型无法捕捉复杂数据规律,如用单隐 ...
2025-10-21在特征工程流程中,“单变量筛选” 是承上启下的关键步骤 —— 它通过分析单个特征与目标变量的关联强度,剔除无意义、冗余的特 ...
2025-10-21在数据分析全流程中,“数据读取” 常被误解为 “简单的文件打开”—— 双击 Excel、执行基础 SQL 查询即可完成。但对 CDA(Cert ...
2025-10-21在实际业务数据分析中,我们遇到的大多数数据并非理想的正态分布 —— 电商平台的用户消费金额(少数用户单次消费上万元,多数集 ...
2025-10-20在数字化交互中,用户的每一次操作 —— 从电商平台的 “浏览商品→加入购物车→查看评价→放弃下单”,到内容 APP 的 “点击短 ...
2025-10-20在数据分析的全流程中,“数据采集” 是最基础也最关键的环节 —— 如同烹饪前需备好新鲜食材,若采集的数据不完整、不准确或不 ...
2025-10-20在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16