shuffle是一个能产生奇迹的地方,不管是在 Spark 还是Hadoop中,它们的作用都是至关重要的。 在Spark中,一般在执行reduceByKey、groupByKey、sortByKey、countByKey、join、cogroup等操作时,会发生shuff ...
2020-05-13HDFS集群有两类节点,并以管理者-工作者模式运行,即一个NameNode(管理者)和多个DataNode(工作者)。 NameNode是Master节点,有点类似Linux里的根目录,是管理文件系统的命名空间。管理数据块映射 ...
2020-05-12桑基是何许图也 据小z不严谨的抽样提问统计,90%想学习桑基图的旁友,都是被她妖艳炫酷的外表所吸引。 而桑基图真正代表了什么?和类似图表相比的独特性是什么? ...
2020-05-12Series数据结构 Series是一种类似于一位数组的对象,由一组数据及一组与之相关的数据标签(即索引)组成。 上面这样的数据结构就是Series,第一列数字是数据标签,第二列是具体的数据 ...
2020-05-12Python在数据分析领域受到社会大众的欢迎,一般而言,在windows上也是能运行Python程序的,不过前提是需要安装python解释器。但是绝大多数的python程序都是跑在Linux机器上的,所以我们需要配置一台linu ...
2020-05-12Kudu是一个列式存储的用于快速分析的NoSQL数据库,提供了类似SQL的查询语句,与RDBMS十分类似,有**PRIMARY KEY **,基于主键查询而不是HBase的RowKey。 kudu拥有毫秒级延迟 与其他大数据数据库不同,Kud ...
2020-05-12什么是卡方分布呢? 卡方分布(chi-square distribution),又名西格玛分布,统计学领域的应用学科,是统计学中的一个非常有用的著名分布。 当n个相互独立的随机变量ξ₁,ξ₂,...,ξn ,均服从标 ...
2020-05-12俗话说的好,工欲善其事,必先利其器。很多从事数据统计分析工作的朋友应该会深有感触,苦于自己80%的时间在做数据清洗,而仅仅只有20%的时间在优化模型、分析统计结果等,今天我们就来介绍下SQL数据清洗。 因此, ...
2020-05-12(1)Excel实现 缺失值填充前后的对比如下图所示: 在数据中年龄用数字填充合适,但是性别用数字填充就不太合适,那么可不可以分开填充呢?答案是可以的,选中想要被填充的那一列,按照填充全部数据的方式进行填充 ...
2020-05-11从菜市场买来的菜,总有一些是坏掉的不太好的,所以把菜买回来之后要做一遍预处理,也就是把那些坏掉的不太好的部分扔掉。现实中大部分的数据都类似于菜市场的菜品,拿到手以后会有一些不好的数据,所以都要先做 ...
2020-05-11《python统计分析》以基础的统计学知识和假设检验为重点,简明扼要地讲述了Python在数据分析、可视化和统计建模中的应用。 主要包括Python的简单介绍、研究设计、数据管理、概率分布、不同数据类型的假设检 ...
2020-05-11最近,看到一道有关T分布的试题《T分布是一条以0为中心左右对称的曲线吗?》确实,T分布是以0为中心,左右对称的一簇单峰曲线。不过,当其自由度越小,曲线的峰度越低,尾部越高,当自由度趋于无穷大时,t分布就是标 ...
2020-05-11混淆矩阵(Confusion Matrix),也成为误差矩阵,是用n行n列矩阵形式来表示的表,这张表通过对比已知分类结果的测试数据的预测值和真实值表来描述衡量分类器的性能。 在二分类的情况下,混淆矩阵是展示预测 ...
2020-05-11统计分析中的长尾分布理论认为,由于成本和效率的因素,过去人们只会关注重要的人或事,如果用需求曲线来描述,受精力与成本等客观因素的限制,人们通常只会关注曲线的“头部”,而选择忽略曲线的“尾部 ...
2020-05-11现在大数据成为一个热门话题, 然而无论是网页、产品信息、车辆的功能、文本、病例,还是气象等数据, 对数据的理解的第一步就是要理解数据之间的关联。认同这一点的话, 就能够理解为什么图论在将来能够为人们的 ...
2020-05-11最近在接触kaggle的竞赛示例,练习了一下,感觉受益匪浅。同时,心中也有个问题。拿到数据之后第一件事是什么?分析数据的情况?怎么分析?分析之后如何去处理数据呢?等等一些数据分析的工作。其中,大家都可能非 ...
2020-05-11python数据挖掘,指用python对数据进行处理,从大型数据库的分析中,发现预测信息的过程。 什么是数据挖掘? 数据挖掘(英文全称Data Mining,简称DM),指从大量的数据中挖掘出未知且有价值的信息和只 ...
2020-05-11一提到深度学习,大部分人会觉得一定非常难,其实不然,深度学习背后的主要原因是人工智能应该从人脑中汲取灵感,而python深度学习,指的是使用编程语言Python来进行深度学习。 众所周知,Python是一门 ...
2020-05-11说道SQL难不难学的问题,应该是见仁见智吧!对于有目标的人而言,学习SQL就会变得简单,大家一定相信这点。当然,千里之行始于足下,学习并没有什么捷径,只能靠努力。 SQLServer是一个可扩展的、高性能的、为分布 ...
2020-05-09随着科技的日新月异,人们对数据的依赖稳步上升中,尤其在商业等领域,对于企业而言正确且连贯的数据流,是他们做出快速、精准的决策的重要依据之一。因此,建立正确的数据流和数据结构才能保证最好的结果,这个过程 ...
2020-05-09数据清洗工具全景指南:从入门到进阶的实操路径 在数据驱动决策的链条中,“数据清洗” 是决定后续分析与建模有效性的 “第一道 ...
2025-08-29机器学习中的参数优化:以预测结果为核心的闭环调优路径 在机器学习模型落地中,“参数” 是连接 “数据” 与 “预测结果” 的关 ...
2025-08-29CDA 数据分析与量化策略分析流程:协同落地数据驱动价值 在数据驱动决策的实践中,“流程” 是确保价值落地的核心骨架 ——CDA ...
2025-08-29CDA含金量分析 在数字经济与人工智能深度融合的时代,数据驱动决策已成为企业核心竞争力的关键要素。CDA(Certified Data Analys ...
2025-08-28CDA认证:数据时代的职业通行证 当海通证券的交易大厅里闪烁的屏幕实时跳动着市场数据,当苏州银行的数字金融部连夜部署新的风控 ...
2025-08-28PCU:游戏运营的 “实时晴雨表”—— 从数据监控到运营决策的落地指南 在游戏行业,DAU(日活跃用户)、MAU(月活跃用户)是衡量 ...
2025-08-28Excel 聚类分析:零代码实现数据分群,赋能中小团队业务决策 在数字化转型中,“数据分群” 是企业理解用户、优化运营的核心手段 ...
2025-08-28CDA 数据分析师:数字化时代数据思维的践行者与价值推动者 当数字经济成为全球经济增长的核心引擎,数据已从 “辅助性信息” 跃 ...
2025-08-28ALTER TABLE ADD 多个 INDEX:数据库批量索引优化的高效实践 在数据库运维与性能优化中,索引是提升查询效率的核心手段。当业务 ...
2025-08-27Power BI 去重函数:数据清洗与精准分析的核心工具 在企业数据分析流程中,数据质量直接决定分析结果的可靠性。Power BI 作为主 ...
2025-08-27CDA 数据分析师:数据探索与统计分析的实践与价值 在数字化浪潮席卷各行业的当下,数据已成为企业核心资产,而 CDA(Certif ...
2025-08-27t 检验与 Wilcoxon 检验:数据差异比较的两大统计利器 在数据分析中,“比较差异” 是核心需求之一 —— 如新药疗效是否优于旧药 ...
2025-08-26季节性分解外推法:解锁时间序列预测的规律密码 在商业决策、资源调度、政策制定等领域,准确的预测是规避风险、提升效率的关键 ...
2025-08-26CDA 数据分析师:数据治理驱动下的企业数据价值守护者 在数字经济时代,数据已成为企业核心战略资产,其价值的释放离不开高 ...
2025-08-26基于 SPSS 的 ROC 曲线平滑调整方法与实践指南 摘要 受试者工作特征曲线(ROC 曲线)是评估诊断模型或预测指标效能的核心工具, ...
2025-08-25神经网络隐藏层神经元个数的确定方法与实践 摘要 在神经网络模型设计中,隐藏层神经元个数的确定是影响模型性能、训练效率与泛 ...
2025-08-25CDA 数据分析师与数据思维:驱动企业管理升级的核心力量 在数字化浪潮席卷全球的当下,数据已成为企业继人力、物力、财力之后的 ...
2025-08-25CDA数据分析师与数据指标:基础概念与协同逻辑 一、CDA 数据分析师:数据驱动时代的核心角色 1.1 定义与行业价值 CDA(Certified ...
2025-08-22Power Query 移动加权平均计算 Power Query 移动加权平均设置全解析:从原理到实战 一、移动加权平均法的核心逻辑 移动加权平均 ...
2025-08-22描述性统计:CDA数据分析师的基础核心与实践应用 一、描述性统计的定位:CDA 认证的 “入门基石” 在 CDA(Certified Data Analy ...
2025-08-22