泛化能力,英文全称generalization ability,指机器学习算法对新鲜样本的适应能力,一种预测新的input类别的能力。 通过学习找到隐含在数据背后的规律,并对具有同一规律的学习集以外的数据,这种经过训练的网络可 ...
2020-05-21
Bi这里是的意思就是Binary,二进制的意思,所以有时候叫这个算法为二进Kmeans算法。为什么我们需要用BiKmeans呢?就是为了解决初始化k个随机的质心点时其中一个或者多个点由于位置太极端而导致迭代的过程中消失的 ...
2020-05-21
SVC,英文全称support vector machine,中文为支持向量机,是一种分类算法,但是也可以做回归,根据输入的数据不同可做不同的模型(若输入标签为连续值则做回归,若输入标签为分类值则用SVC()做分类) ...
2020-05-20
方法一: K平均算法(K-means聚类分析) 在下面的误差平方和图中,拐点(bend or elbow)的位置对应的x轴即k-means聚类给出的合适的类的个数。 > n = 100 > g=6 > set.seed(g) > d <- data.frame(x = unlist(lap ...
2020-05-20
【磐创AI导读】:评估一个模型是建立一个有效的机器学习模型的核心部分,本文为大家介绍了一些机器学习模型评估指标,希望对大家有所帮助。 评估一个模型是建立一个有效的机器学习模型的核心部分 ...
2020-05-20
最大后验估计(maximum a posteriori probability estimate, 简称MAP),是贝叶斯学派的法宝之一。 与统计学派不同,贝叶斯学派认为在做估计之前,人们对要估计的实物先有一个经验性的判断,然后根据数据调整对这 ...
2020-05-20
特征向量(eigenvector),矩阵理论上一个非常重要的概念,被广泛的应用于各个领域。 数学上,线性变换的特征向量(本征向量)是一个非简并的向量,其方向在该变换下不变,该向量在此变换下缩放的比例称为其特征值 ...
2020-05-20
1.AI人工智能 Artificial Intelligence 人工智能(Artificial Intelligence),英文缩写为AI。它是研究、开发用于模拟、延伸和扩展人的智能的理论、方法、技术及应用系统的一门新的技术科学。 人工智 ...
2020-05-20
Z-Score,又称为再Z分数、标准分数,一个数与平均数的差再除以标准差的过程。 Z-Score能够衡量出一个分数距离平均数的相对标准距离,如果我们把每一个分数都转换成z分数,那么每一个z分数会以标准差为单位表示 ...
2020-05-20
召回率(Recall),一般指查全率,指从数据库内检出的相关的信息量与总量的比率,是数据挖掘中预测、互联网中的搜索引擎等经常涉及的两个概念和指标之一。 在实际应用中,多数人更喜欢称召回率为召回率,因为更能体 ...
2020-05-20
先验概率和后验概率是与贝叶斯概率更新有关的两个概念百。假如某一不确定事件发生的主观概率 因为某个新情况的出现 而发生了改变,那么改变前的那个概率就被叫做先验概率,改变后的概率就叫后验概率。 先验概率是指 ...
2020-05-19
K-s是模型验证的最常用的“武器”之一,而K-s曲线指洛伦兹曲线之间的差值。 K-S曲线主要是验证模型的区分能力,通常是在模型预测全体样本的信用评分后,将全体样本按违约与非违约分为两部分,然后用K-S统计量来检验 ...
2020-05-19
在判断是有监督学习还是在无监督学习上,我们可以具体是否有监督(supervised),就看输入数据是否有标签(label)。输入数据有标签,则为有监督学习,没标签则为无监督学习。 什么是学习(learning)? 一个成语 ...
2020-05-19
有部分同学,在学习初期,会认为下采样和池化是指同样的事情,只是叫法不同而已,其实这是一种错误的认知。 下采样(subsampled),或称为降采样(downsampled),指缩小图像。其主要目是使得图像符合显示区域的 ...
2020-05-19
FP-Growth使用了一种特殊的分治策略,将提供频繁项集的数据库压缩到一棵频繁模式树(FP-tree),但仍保留项集关联信息。 这种关联分析算法的概念由韩嘉炜等人在2000年提出,在FP-Growth算法中使用了一种称为频繁模 ...
2020-05-19
feature importance指特征重要性,在特征选择的许多方法中,我们可以使用随机森林模型中的特征重要属性来筛选特征,并得到其与分类的相关性。 由于随机森林存在的固有随机性,该模型可能每次给予特征不同的重要性 ...
2020-05-19
人工智能涉及到很多的技术,大家都知道人工智能离不开机器学习,不过比较少人知道人工智能也是离不开模式识别的。什么是模式识别呢?简单点说,模式识别就是对各种情况的识别。而在人工智能中,模式识别是一 ...
2020-05-19
机器学习算法会涉及到大量的数学基础内容,数学好的童靴们,你们的优势来了。在机器学习中涉及到了三个数学工具,分别是线性代数、概率统计(概率估计)、最优化理论。 今天,我们来讲概率统计,在机器学习中会涉及 ...
2020-05-19
在统计学中,连续型变量和离散型变量极为常见,今天我们就来看看它们的区别是什么? 变量值的变动幅度不同。 对离散变量,如果变量值的变动幅度小,就可以一个变量值对应一组,称单项式分组。如居民家庭按儿童数或 ...
2020-05-18
一般来说,Rcall指令属于ROM空间的相对寻址范畴,call属于ROM空间的直接寻址范畴。 CALL和RCALL的区别: 1、指令长度不同; 2、指令执行所需机器周期不同; 3、寻址范围不同。 ——其他知识点普及: R ...
2020-05-18在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01在时间序列预测任务中,LSTM(长短期记忆网络)凭借对时序依赖关系的捕捉能力成为主流模型。但很多开发者在实操中会遇到困惑:用 ...
2025-12-01引言:数据时代的“透视镜”与“掘金者” 在数字经济浪潮下,数据已成为企业决策的核心资产,而CDA数据分析师正是挖掘数据价值的 ...
2025-12-01数据分析师的日常,常始于一堆“毫无章法”的数据点:电商后台导出的零散订单记录、APP埋点收集的无序用户行为日志、传感器实时 ...
2025-11-28在MySQL数据库运维中,“query end”是查询执行生命周期的收尾阶段,理论上耗时极短——主要完成结果集封装、资源释放、事务状态 ...
2025-11-28在CDA(Certified Data Analyst)数据分析师的工具包中,透视分析方法是处理表结构数据的“瑞士军刀”——无需复杂代码,仅通过 ...
2025-11-28在统计分析中,数据的分布形态是决定“用什么方法分析、信什么结果”的底层逻辑——它如同数据的“性格”,直接影响着描述统计的 ...
2025-11-27在电商订单查询、用户信息导出等业务场景中,技术人员常面临一个选择:是一次性查询500条数据,还是分5次每次查询100条?这个问 ...
2025-11-27对数据分析从业者和学生而言,表结构数据是最基础也最核心的分析载体——CRM系统的用户表、门店的销售明细表、仓库的库存表,都 ...
2025-11-27在业务数据可视化中,热力图(Heat Map)是传递“数据密度与分布特征”的核心工具——它通过颜色深浅直观呈现数据值的高低,让“ ...
2025-11-26在企业数字化转型中,业务数据分析师是连接数据与决策的核心纽带。但“数据分析师”并非单一角色,从初级到高级,其职责边界、能 ...
2025-11-26