矩阵是一个由m*n个数排成的m行n列的表称为m行n列的矩阵,简称为m*n矩阵。下面的矩阵是一个3*2(3乘2)矩阵,因为它有三行四列。 在数学的概念中,矩阵(Matrix)是一个按照长方阵列排列的复数或实数集合,最 ...
2020-05-29来源:接地气学堂 作者:接地气的陈老师 很多同学抱怨:每天对着大堆数字,却看不出个名堂。反而有些做业务的人,看几个数字就能马上做出准确判断。咋回事!看着数据没有感觉,是缺少数据洞察力 ...
2020-05-29作者:刘早起 来源:早起python 前言 近期,全国多地以各种形式投放消费券、消费补贴来鼓励消费,部分城市在首期消费券的基础上,连续追加发放多期消费券。于是,不少网友相互比较起来:你在的城市 ...
2020-05-29
1980年代末,汉斯拉伊大学(Hansraj College)经济学荣誉毕业生的平均薪酬约为每年100万印度卢比。这一数字大大高于80年代初或90年代初毕业的人们。 他们平均水平如此之高的原因是什么呢?沙鲁克·汗是印度收入最 ...
2020-05-29前两篇文章介绍了几种常见的条形图,实际上看起来简单的条形图可探索的设置还有很多!在体育赛事中,经常出现一种对称条形图,比如对比两个热门选手或者队伍在各方面的打分情况等,这也是在普通横向条形图的基础上 ...
2020-05-29在我看来,作为一位中国人的我们不管做什么决定都在面临多种选择。例如,如果我这个时候想要买一本书,但是我却不知道我想看什么书、不知道类型、不知道方向,那么这个时候打开各种进行软件搜索可能会出现各种各样 ...
2020-05-29
没有干净的原始数据,为了满足机器学习怼数据的要求,必须过滤数据。例如, 1、查看数据,并排除所有缺少大量数据的列。 2、再次查看数据,然后选择要用于预测的列(特征选择)。进行迭代时,可能需要 ...
2020-05-29
机器学习算法通常分为有监督的(训练数据有标记答案)和无监督的(可能存在的任何标签均未显示在训练算法中)。有监督的机器学习问题又分为分类(预测非数字答案,例如错过抵押贷款的可能性)和回归(预测 ...
2020-05-29
用于实际问题的深度神经网络可能具有10层以上的隐藏层。它的拓扑可能很简单,也可能很复杂。网络中的层越多,它可以识别的特征就越多。不幸的是,网络中的层越多,计算所需的时间就越长,并且训练起来就越困难。 ...
2020-05-27我们最后来讲python另外一个非常出色的可视化工具,使用plotly创建出色的交互式图,最后,不再需要Matplotlib! Plotly具有三个重要功能: · 悬停:将鼠标悬停在图表上时,将弹出注释 · 交互性:无 ...
2020-05-27延续上一篇pandas的文章,我们继续来探讨python中的seaborn,能画出多么高级和漂亮的图标。 漂亮:seaborn的高级绘图
2020-05-27机器学习既是艺术又是科学。但当您查看机器学习算法时,没有一种解决方案或一种适合所有情况的算法。有几个因素会影响您选择哪种机器学习。 有些问题非常具体,需要采取独特的方法。例如,如果您使用推荐系统, ...
2020-05-27两项分别由英国人工智能实验室DeepMind与由德国和希腊的研究人员进行的研究显示了AI与神经网络科学之间有着令人着迷的关系。 就像大多数科学家说的那样,我们距开发能够像人类一样有效地解决问题的人工智能 ...
2020-05-27动态条形图大火了一阵子,尤其是那种对比世界各国历年来的GDP或者军事实力的动态条形图,配上激动人心的音乐,眼看着中国从后往前排名不断考前,作为爱国的人,集体荣誉感爆棚的那种,真的是心潮澎湃自豪到仿佛国 ...
2020-05-27基于python数据可视化的绘图系统matplotlib功能非常强大,按照国际惯例,写在最开始的是对要介绍对象的定义。喏,这是从维基百科搬运过来的对饼图的解释,请安心受下: 饼图,或称饼状图,是一个划分为几个扇形 ...
2020-05-27本篇文章主要介绍了pandas中对series和dataframe对象进行连接的方法:pd.append()和pd.concat(),文中通过示例代码对这两种方法进行了详细的介绍,希望能对各位python小白的学习有所帮助。 一、df.append(d ...
2020-05-27大家在学习算法的时候会学习到关于Kmeans的算法,但是网络和很多机器学习算法书中关于Kmeans的算法理论核心一样,但是代码实现过于复杂,效率不高,不方便阅读。这篇文章首先列举出Kmeans核心的算法过程 ...
2020-05-27python 有很多种方式处理日期和时间,常见的时间处理的模块是datetime、time、calendar。能融汇贯通的了解和使用这三个模块,才能轻而易举地用python处理时间。本文以此为目的,通过讲述各个时间模块的概述、函数 ...
2020-05-26目前,python语音识别越来越流行,今天本系列文章开始,我们将一起探索自动语音识别、语言处理技术所包含的核心算法、模型及未来的发展趋势。本篇文章我们主要讨论语音识别的基本概念。并理解语音识别技术的流程。 ...
2020-05-26以下就是本篇文章的主要内容 我们为什么要选择Jupyter Notebook呢?首先要跟大家说一些,Jupyter NoteBook并不是一个单独的Python编译器,而是在Anaconda这个软件下的一款编译器,在Anaconda下还有其他的编译器 ...
2020-05-26在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01在时间序列预测任务中,LSTM(长短期记忆网络)凭借对时序依赖关系的捕捉能力成为主流模型。但很多开发者在实操中会遇到困惑:用 ...
2025-12-01引言:数据时代的“透视镜”与“掘金者” 在数字经济浪潮下,数据已成为企业决策的核心资产,而CDA数据分析师正是挖掘数据价值的 ...
2025-12-01数据分析师的日常,常始于一堆“毫无章法”的数据点:电商后台导出的零散订单记录、APP埋点收集的无序用户行为日志、传感器实时 ...
2025-11-28在MySQL数据库运维中,“query end”是查询执行生命周期的收尾阶段,理论上耗时极短——主要完成结果集封装、资源释放、事务状态 ...
2025-11-28在CDA(Certified Data Analyst)数据分析师的工具包中,透视分析方法是处理表结构数据的“瑞士军刀”——无需复杂代码,仅通过 ...
2025-11-28在统计分析中,数据的分布形态是决定“用什么方法分析、信什么结果”的底层逻辑——它如同数据的“性格”,直接影响着描述统计的 ...
2025-11-27在电商订单查询、用户信息导出等业务场景中,技术人员常面临一个选择:是一次性查询500条数据,还是分5次每次查询100条?这个问 ...
2025-11-27对数据分析从业者和学生而言,表结构数据是最基础也最核心的分析载体——CRM系统的用户表、门店的销售明细表、仓库的库存表,都 ...
2025-11-27在业务数据可视化中,热力图(Heat Map)是传递“数据密度与分布特征”的核心工具——它通过颜色深浅直观呈现数据值的高低,让“ ...
2025-11-26在企业数字化转型中,业务数据分析师是连接数据与决策的核心纽带。但“数据分析师”并非单一角色,从初级到高级,其职责边界、能 ...
2025-11-26