京公网安备 11010802034615号
经营许可证编号:京B2-20210330
sns.reset_defaults()
sns.set(
rc={'figure.figsize':(7,5)},
style="white" # nicer layout )
如前所述,我非常喜欢分布。 直方图和核密度分布都是可视化特定变量的关键特征的有效方法。 让我们看看如何在一个图表中为单个变量或多个变量分配生成分布。
Left chart: Histogram and kernel density estimation of “Life Ladder” for Asian countries in 2018; Ri
每当我想直观地探索两个或多个变量之间的关系时,通常都会归结为某种形式的散点图和分布评估。 概念上相似的图有三种变体。 在每个图中,中心图(散点图,双变量KDE和hexbin)有助于理解两个变量之间的联合频率分布。 此外,在中心图的右边界和上边界,描绘了各个变量的边际单变量分布(作为KDE或直方图)。
sns.jointplot( x='Log GDP per capita', y='Life Ladder', data=data, kind='scatter' # or 'kde' or 'hex' )
Seaborn jointplot with scatter, bivariate kde, and hexbin in the center graph and marginal distribut
散点图是一种可视化两个变量的联合密度分布的方法。 我们可以通过添加色相来添加第三个变量,并通过添加size参数来可视化第四个变量。
sns.scatterplot( x='Log GDP per capita', y='Life Ladder', data=data[data['Year'] == 2018], hue='Continent', size='Gapminder Population' ) # both, hue and size are optional sns.despine() # prettier layout
Log GDP per capita against Life Ladder, colors based on the continent and size on population
小提琴图是箱形图和籽粒密度估计值的组合。 它起着箱形图的作用。 它显示了跨类别变量的定量数据分布,以便可以比较那些分布。
sns.set(
rc={'figure.figsize':(18,6)},
style="white" )
sns.violinplot(
x='Continent',
y='Life Ladder',
hue='Mean Log GDP per capita',
data=data
)
sns.despine()
Violin plot where we plot continents against Life Ladder, we use the Mean Log GDP per capita to grou
Seaborn对图在一个大网格中绘制了两个变量散点图的所有组合。 我通常感觉这有点信息过载,但是它可以帮助发现模式。
sns.set( style="white", palette="muted", color_codes=True ) sns.pairplot( data[data.Year == 2018][[ 'Life Ladder','Log GDP per capita', 'Social support','Healthy life expectancy at birth', 'Freedom to make life choices','Generosity', 'Perceptions of corruption', 'Positive affect', 'Negative affect','Confidence in national government', 'Mean Log GDP per capita' ]].dropna(), hue='Mean Log GDP per capita' )
Seaborn scatterplot grid where all selected variables a scattered against every other variable in th
对我而言,Seaborn的FacetGrid是使用Seaborn的最令人信服的论点之一,因为它使创建多图变得轻而易举。 通过对图,我们已经看到了FacetGrid的示例。 FacetGrid允许创建按变量分段的多个图表。 例如,行可以是一个变量(人均GDP类别),列可以是另一个变量(大陆)。
它确实比我个人需要更多的自定义(即使用matplotlib),但这仍然很吸引人。
FacetGrid —折线图
g = sns.FacetGrid( data.groupby(['Mean Log GDP per capita','Year','Continent'])['Life Ladder'].mean().reset_index(), row='Mean Log GDP per capita', col='Continent', margin_titles=True ) g = (g.map(plt.plot, 'Year','Life Ladder'))
Life Ladder on the Y-axis, Year on the X-axis. The grid’s columns are the continent, and the grid’s rows are the different levels of Mean Log GDP per capita. Overall things seem to be getting better for the countries with a Low Mean Log GDP per Capita in North America and the countries with a Medium or High Mean Log GDP per Capita in Europe
FacetGrid —直方图
g = sns.FacetGrid(data, col="Continent", col_wrap=3,height=4) g = (g.map(plt.hist, "Life Ladder",bins=np.arange(2,9,0.5)))
FacetGrid with a histogram of LifeLadder by continent
FacetGrid —带注释的KDE图
也可以向网格中的每个图表添加构面特定的符号。 在下面的示例中,我们添加平均值和标准偏差,并在该平均值处绘制一条垂直线(下面的代码)。
Life Ladder kernel density estimation based on the continent, annotated with a mean and standard deviation
def vertical_mean_line(x, **kwargs):
plt.axvline(x.mean(), linestyle ="--",
color = kwargs.get("color", "r"))
txkw = dict(size=15, color = kwargs.get("color", "r"))
label_x_pos_adjustment = 0.08 # this needs customization based on your data
label_y_pos_adjustment = 5 # this needs customization based on your data
if x.mean() < 6: # this needs customization based on your data
tx = "mean: {:.2f}\n(std: {:.2f})".format(x.mean(),x.std())
plt.text(x.mean() + label_x_pos_adjustment, label_y_pos_adjustment, tx, **txkw)
else:
tx = "mean: {:.2f}\n (std: {:.2f})".format(x.mean(),x.std())
plt.text(x.mean() -1.4, label_y_pos_adjustment, tx, **txkw)
_ = data.groupby(['Continent','Year'])['Life Ladder'].mean().reset_index()
g = sns.FacetGrid(_, col="Continent", height=4, aspect=0.9, col_wrap=3, margin_titles=True)
g.map(sns.kdeplot, "Life Ladder", shade=True, color='royalblue')
g.map(vertical_mean_line, "Life Ladder")
FacetGrid —热图
我最喜欢的绘图类型之一是热图FacetGrid,即网格每个面中的热图。 这种类型的绘图对于在一个绘图中可视化四个维度和一个度量很有用。 该代码有点麻烦,但可以根据需要快速进行调整。 值得注意的是,这种图表需要相对大量的数据或适当的细分,因为它不能很好地处理缺失值。
Facet heatmap, visualizing on the outer rows a year range, outer columns the GDP per Capita, on the inner rows the level of perceived corruption and the inner columns the continents. We see that happiness increases towards the top right (i.e., high GDP per Capita and low perceived corruption). The effect of time is not definite, and some continents (Europe and North America) seem to be happier than others (Africa).
def draw_heatmap(data,inner_row, inner_col, outer_row, outer_col, values, vmin,vmax):
sns.set(font_scale=1)
fg = sns.FacetGrid(
data,
row=outer_row,
col=outer_col,
margin_titles=True
)
position = left, bottom, width, height = 1.4, .2, .1, .6
cbar_ax = fg.fig.add_axes(position)
fg.map_dataframe(
draw_heatmap_facet,
x_col=inner_col,
y_col=inner_row,
values=values,
cbar_ax=cbar_ax,
vmin=vmin,
vmax=vmax
)
fg.fig.subplots_adjust(right=1.3)
plt.show()
def draw_heatmap_facet(*args, **kwargs):
data = kwargs.pop('data')
x_col = kwargs.pop('x_col')
y_col = kwargs.pop('y_col')
values = kwargs.pop('values')
d = data.pivot(index=y_col, columns=x_col, values=values)
annot = round(d,4).values
cmap = sns.color_palette("Blues",30) + sns.color_palette("Blues",30)[0::2]
#cmap = sns.color_palette("Blues",30)
sns.heatmap(
d,
**kwargs,
annot=annot,
center=0,
cmap=cmap,
linewidth=.5
)
# Data preparation
_ = data.copy()
_['Year'] = pd.cut(_['Year'],bins=[2006,2008,2012,2018])
_['GDP per Capita'] = _.groupby(['Continent','Year'])['Log GDP per capita'].transform(
pd.qcut,
q=3,
labels=(['Low','Medium','High'])
).fillna('Low')
_['Corruption'] = _.groupby(['Continent','GDP per Capita'])['Perceptions of corruption'].transform(
pd.qcut,
q=3,
labels=(['Low','Medium','High'])
)
_ = _[_['Continent'] != 'Oceania'].groupby(['Year','Continent','GDP per Capita','Corruption'])['Life Ladder'].mean().reset_index()
_['Life Ladder'] = _['Life Ladder'].fillna(-10)
draw_heatmap(
data=_,
outer_row='Corruption',
outer_col='GDP per Capita',
inner_row='Year',
inner_col='Continent',
values='Life Ladder',
vmin=3,
vmax=8,
)
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在机器学习建模实操中,“特征选择”是提升模型性能、简化模型复杂度、解读数据逻辑的核心步骤——而随机森林(Random Forest) ...
2026-02-12在MySQL数据查询实操中,按日期分组统计是高频需求——比如统计每日用户登录量、每日订单量、每日销售额,需要按日期分组展示, ...
2026-02-12对CDA(Certified Data Analyst)数据分析师而言,描述性统计是贯穿实操全流程的核心基础,更是从“原始数据”到“初步洞察”的 ...
2026-02-12备考CDA的小伙伴,专属宠粉福利来啦! 不用拼运气抽奖,不用复杂操作,只要转发CDA真题海报到朋友圈集赞,就能免费抱走实用好礼 ...
2026-02-11在数据科学、机器学习实操中,Anaconda是必备工具——它集成了Python解释器、conda包管理器,能快速搭建独立的虚拟环境,便捷安 ...
2026-02-11在Tableau数据可视化实操中,多表连接是高频操作——无论是将“产品表”与“销量表”连接分析产品销量,还是将“用户表”与“消 ...
2026-02-11在CDA(Certified Data Analyst)数据分析师的实操体系中,统计基本概念是不可或缺的核心根基,更是连接原始数据与业务洞察的关 ...
2026-02-11在数字经济飞速发展的今天,数据已成为核心生产要素,渗透到企业运营、民生服务、科技研发等各个领域。从个人手机里的浏览记录、 ...
2026-02-10在数据分析、实验研究中,我们经常会遇到小样本配对数据的差异检验场景——比如同一组受试者用药前后的指标对比、配对分组的两组 ...
2026-02-10在结构化数据分析领域,透视分析(Pivot Analysis)是CDA(Certified Data Analyst)数据分析师最常用、最高效的核心实操方法之 ...
2026-02-10在SQL数据库实操中,字段类型的合理设置是保证数据运算、统计准确性的基础。日常开发或数据分析时,我们常会遇到这样的问题:数 ...
2026-02-09在日常办公数据分析中,Excel数据透视表是最常用的高效工具之一——它能快速对海量数据进行分类汇总、分组统计,将杂乱无章的数 ...
2026-02-09表结构数据作为结构化数据的核心载体,其“获取-加工-使用”全流程,是CDA(Certified Data Analyst)数据分析师开展专业工作的 ...
2026-02-09在互联网产品运营、用户增长的实战场景中,很多从业者都会陷入一个误区:盲目投入资源做推广、拉新,却忽视了“拉新后的用户激活 ...
2026-02-06在机器学习建模过程中,特征选择是决定模型性能的关键环节——面对动辄几十、上百个特征的数据(如用户画像的几十项维度、企业经 ...
2026-02-06在CDA(Certified Data Analyst)数据分析师的日常实操中,表格结构数据是贯穿全流程的核心载体,而对表格数据类型的精准识别、 ...
2026-02-06在日常办公数据分析中,我们经常会面对杂乱无章的批量数据——比如员工月度绩效、产品销售数据、客户消费金额、月度运营指标等。 ...
2026-02-05在分类模型(如风控反欺诈、医疗疾病诊断、客户流失预警)的实操落地中,ROC曲线是评估模型区分能力的核心工具,而阈值则是连接 ...
2026-02-05对CDA(Certified Data Analyst)数据分析师而言,数据分析的价值不仅在于挖掘数据背后的规律与洞察,更在于通过专业的报告呈现 ...
2026-02-05在数据分析实战中,我们经常会遇到“多指标冗余”的问题——比如分析企业经营状况时,需同时关注营收、利润、负债率、周转率等十 ...
2026-02-04