京公网安备 11010802034615号
经营许可证编号:京B2-20210330
sns.reset_defaults()
sns.set(
rc={'figure.figsize':(7,5)},
style="white" # nicer layout )
如前所述,我非常喜欢分布。 直方图和核密度分布都是可视化特定变量的关键特征的有效方法。 让我们看看如何在一个图表中为单个变量或多个变量分配生成分布。
Left chart: Histogram and kernel density estimation of “Life Ladder” for Asian countries in 2018; Ri
每当我想直观地探索两个或多个变量之间的关系时,通常都会归结为某种形式的散点图和分布评估。 概念上相似的图有三种变体。 在每个图中,中心图(散点图,双变量KDE和hexbin)有助于理解两个变量之间的联合频率分布。 此外,在中心图的右边界和上边界,描绘了各个变量的边际单变量分布(作为KDE或直方图)。
sns.jointplot( x='Log GDP per capita', y='Life Ladder', data=data, kind='scatter' # or 'kde' or 'hex' )
Seaborn jointplot with scatter, bivariate kde, and hexbin in the center graph and marginal distribut
散点图是一种可视化两个变量的联合密度分布的方法。 我们可以通过添加色相来添加第三个变量,并通过添加size参数来可视化第四个变量。
sns.scatterplot( x='Log GDP per capita', y='Life Ladder', data=data[data['Year'] == 2018], hue='Continent', size='Gapminder Population' ) # both, hue and size are optional sns.despine() # prettier layout
Log GDP per capita against Life Ladder, colors based on the continent and size on population
小提琴图是箱形图和籽粒密度估计值的组合。 它起着箱形图的作用。 它显示了跨类别变量的定量数据分布,以便可以比较那些分布。
sns.set(
rc={'figure.figsize':(18,6)},
style="white" )
sns.violinplot(
x='Continent',
y='Life Ladder',
hue='Mean Log GDP per capita',
data=data
)
sns.despine()
Violin plot where we plot continents against Life Ladder, we use the Mean Log GDP per capita to grou
Seaborn对图在一个大网格中绘制了两个变量散点图的所有组合。 我通常感觉这有点信息过载,但是它可以帮助发现模式。
sns.set( style="white", palette="muted", color_codes=True ) sns.pairplot( data[data.Year == 2018][[ 'Life Ladder','Log GDP per capita', 'Social support','Healthy life expectancy at birth', 'Freedom to make life choices','Generosity', 'Perceptions of corruption', 'Positive affect', 'Negative affect','Confidence in national government', 'Mean Log GDP per capita' ]].dropna(), hue='Mean Log GDP per capita' )
Seaborn scatterplot grid where all selected variables a scattered against every other variable in th
对我而言,Seaborn的FacetGrid是使用Seaborn的最令人信服的论点之一,因为它使创建多图变得轻而易举。 通过对图,我们已经看到了FacetGrid的示例。 FacetGrid允许创建按变量分段的多个图表。 例如,行可以是一个变量(人均GDP类别),列可以是另一个变量(大陆)。
它确实比我个人需要更多的自定义(即使用matplotlib),但这仍然很吸引人。
FacetGrid —折线图
g = sns.FacetGrid( data.groupby(['Mean Log GDP per capita','Year','Continent'])['Life Ladder'].mean().reset_index(), row='Mean Log GDP per capita', col='Continent', margin_titles=True ) g = (g.map(plt.plot, 'Year','Life Ladder'))
Life Ladder on the Y-axis, Year on the X-axis. The grid’s columns are the continent, and the grid’s rows are the different levels of Mean Log GDP per capita. Overall things seem to be getting better for the countries with a Low Mean Log GDP per Capita in North America and the countries with a Medium or High Mean Log GDP per Capita in Europe
FacetGrid —直方图
g = sns.FacetGrid(data, col="Continent", col_wrap=3,height=4) g = (g.map(plt.hist, "Life Ladder",bins=np.arange(2,9,0.5)))
FacetGrid with a histogram of LifeLadder by continent
FacetGrid —带注释的KDE图
也可以向网格中的每个图表添加构面特定的符号。 在下面的示例中,我们添加平均值和标准偏差,并在该平均值处绘制一条垂直线(下面的代码)。
Life Ladder kernel density estimation based on the continent, annotated with a mean and standard deviation
def vertical_mean_line(x, **kwargs):
plt.axvline(x.mean(), linestyle ="--",
color = kwargs.get("color", "r"))
txkw = dict(size=15, color = kwargs.get("color", "r"))
label_x_pos_adjustment = 0.08 # this needs customization based on your data
label_y_pos_adjustment = 5 # this needs customization based on your data
if x.mean() < 6: # this needs customization based on your data
tx = "mean: {:.2f}\n(std: {:.2f})".format(x.mean(),x.std())
plt.text(x.mean() + label_x_pos_adjustment, label_y_pos_adjustment, tx, **txkw)
else:
tx = "mean: {:.2f}\n (std: {:.2f})".format(x.mean(),x.std())
plt.text(x.mean() -1.4, label_y_pos_adjustment, tx, **txkw)
_ = data.groupby(['Continent','Year'])['Life Ladder'].mean().reset_index()
g = sns.FacetGrid(_, col="Continent", height=4, aspect=0.9, col_wrap=3, margin_titles=True)
g.map(sns.kdeplot, "Life Ladder", shade=True, color='royalblue')
g.map(vertical_mean_line, "Life Ladder")
FacetGrid —热图
我最喜欢的绘图类型之一是热图FacetGrid,即网格每个面中的热图。 这种类型的绘图对于在一个绘图中可视化四个维度和一个度量很有用。 该代码有点麻烦,但可以根据需要快速进行调整。 值得注意的是,这种图表需要相对大量的数据或适当的细分,因为它不能很好地处理缺失值。
Facet heatmap, visualizing on the outer rows a year range, outer columns the GDP per Capita, on the inner rows the level of perceived corruption and the inner columns the continents. We see that happiness increases towards the top right (i.e., high GDP per Capita and low perceived corruption). The effect of time is not definite, and some continents (Europe and North America) seem to be happier than others (Africa).
def draw_heatmap(data,inner_row, inner_col, outer_row, outer_col, values, vmin,vmax):
sns.set(font_scale=1)
fg = sns.FacetGrid(
data,
row=outer_row,
col=outer_col,
margin_titles=True
)
position = left, bottom, width, height = 1.4, .2, .1, .6
cbar_ax = fg.fig.add_axes(position)
fg.map_dataframe(
draw_heatmap_facet,
x_col=inner_col,
y_col=inner_row,
values=values,
cbar_ax=cbar_ax,
vmin=vmin,
vmax=vmax
)
fg.fig.subplots_adjust(right=1.3)
plt.show()
def draw_heatmap_facet(*args, **kwargs):
data = kwargs.pop('data')
x_col = kwargs.pop('x_col')
y_col = kwargs.pop('y_col')
values = kwargs.pop('values')
d = data.pivot(index=y_col, columns=x_col, values=values)
annot = round(d,4).values
cmap = sns.color_palette("Blues",30) + sns.color_palette("Blues",30)[0::2]
#cmap = sns.color_palette("Blues",30)
sns.heatmap(
d,
**kwargs,
annot=annot,
center=0,
cmap=cmap,
linewidth=.5
)
# Data preparation
_ = data.copy()
_['Year'] = pd.cut(_['Year'],bins=[2006,2008,2012,2018])
_['GDP per Capita'] = _.groupby(['Continent','Year'])['Log GDP per capita'].transform(
pd.qcut,
q=3,
labels=(['Low','Medium','High'])
).fillna('Low')
_['Corruption'] = _.groupby(['Continent','GDP per Capita'])['Perceptions of corruption'].transform(
pd.qcut,
q=3,
labels=(['Low','Medium','High'])
)
_ = _[_['Continent'] != 'Oceania'].groupby(['Year','Continent','GDP per Capita','Corruption'])['Life Ladder'].mean().reset_index()
_['Life Ladder'] = _['Life Ladder'].fillna(-10)
draw_heatmap(
data=_,
outer_row='Corruption',
outer_col='GDP per Capita',
inner_row='Year',
inner_col='Continent',
values='Life Ladder',
vmin=3,
vmax=8,
)
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01在时间序列预测任务中,LSTM(长短期记忆网络)凭借对时序依赖关系的捕捉能力成为主流模型。但很多开发者在实操中会遇到困惑:用 ...
2025-12-01引言:数据时代的“透视镜”与“掘金者” 在数字经济浪潮下,数据已成为企业决策的核心资产,而CDA数据分析师正是挖掘数据价值的 ...
2025-12-01数据分析师的日常,常始于一堆“毫无章法”的数据点:电商后台导出的零散订单记录、APP埋点收集的无序用户行为日志、传感器实时 ...
2025-11-28在MySQL数据库运维中,“query end”是查询执行生命周期的收尾阶段,理论上耗时极短——主要完成结果集封装、资源释放、事务状态 ...
2025-11-28在CDA(Certified Data Analyst)数据分析师的工具包中,透视分析方法是处理表结构数据的“瑞士军刀”——无需复杂代码,仅通过 ...
2025-11-28在统计分析中,数据的分布形态是决定“用什么方法分析、信什么结果”的底层逻辑——它如同数据的“性格”,直接影响着描述统计的 ...
2025-11-27在电商订单查询、用户信息导出等业务场景中,技术人员常面临一个选择:是一次性查询500条数据,还是分5次每次查询100条?这个问 ...
2025-11-27对数据分析从业者和学生而言,表结构数据是最基础也最核心的分析载体——CRM系统的用户表、门店的销售明细表、仓库的库存表,都 ...
2025-11-27在业务数据可视化中,热力图(Heat Map)是传递“数据密度与分布特征”的核心工具——它通过颜色深浅直观呈现数据值的高低,让“ ...
2025-11-26在企业数字化转型中,业务数据分析师是连接数据与决策的核心纽带。但“数据分析师”并非单一角色,从初级到高级,其职责边界、能 ...
2025-11-26