
基于python数据可视化的绘图系统matplotlib功能非常强大,按照国际惯例,写在最开始的是对要介绍对象的定义。喏,这是从维基百科搬运过来的对饼图的解释,请安心受下:
饼图,或称饼状图,是一个划分为几个扇形的圆形统计图表,用于描述量、频率或百分比之间的相对关系。在饼图中,每个扇区的弧长(以及圆心角和面积)大小为其所表示的数量的比例。这些扇区合在一起刚好是一个完全的圆形。顾名思义,这些扇区拼成了一个切开的饼形图案。
当然,文字的解释永远没有一个图来的直观:
这也是从维基百科上偷运过来的英语为母语的人口分布饼图。不客气的讲,这个图画的相当简陋,只能看出来一个大概的比例,像最后三个基本看不出来差别多有多少,所以我们在绘图的时候尽量加上数量标签,这样一眼就能看得出来差距在哪里了。
画图第一步是什么?当然是要数据啊,所有的图都是对数据的一种展现形式而已!ok,先来看下我们的数据长什么样子:
这是几个学校语数外平均成绩数据的前五行,整个数据源包含21条记录,也就是有21个学校的平均成绩信息,我们计划查看其中一个学校或者几个学校的成绩饼图。
先画一个最简单的饼图看看效果:
plt.figure(figsize=(8,8),dpi=80) #新建画布,由于饼图是原型的,所以新建画布为正方形 plt.pie(data2.iloc[0,1:] #选取数据源为第一小学的成绩
,labels=['语文','数学','英语']) #设置每一角饼的标签 plt.title('第1小学各学科成绩占比',fontsize=12); #设置饼图的标题和标题字号
效果图如下:
是不是和维基百科搬运过来的饼图很相像?还比那个多了个标题,嘿嘿…但是前边说好的要显示比例标签呢?别急,其实可以设置的内容还有不少,不止是可以设置比例标签呢!
plt.figure(figsize=(8,8),dpi=80) #新建画布 plt.pie(data2.iloc[0,1:] #选取数据源
,labels=['语文','数学','英语'] #增加标签
,autopct='%.2f%%' #设置百分比精度
,shadow=True #显示阴影,能够增加立体感
,explode=[0.03,0.03,0.03] #设置饼图各个扇区之间的间隙
,colors=['r','g','b']) #设置饼图各个扇区的颜色 plt.title('第1小学各学科成绩占比',fontsize=12);
每行代码的含义都以备注的方式解释明白了,以上只是常用的参数,当然还有一些不常用的参数并没有全都一一试验,给有好奇心的小可爱可以自行探索哈。
接下来查看效果的时间到了:
原谅我比较懒,没有探索更好看的配色,直接粗暴的用了RGB(逃走)。
一次绘制多个饼图其实对饼图没什么要求,只是需要添加几个子图而已!所谓子图是相对于我们建立的整个画布而言的,整个画布相当与一张白纸,而子图就相当于是给整张白纸进行了分区,每个分区里边放上一个完整的图形:
pic2 = plt.figure(figsize=(8,8),dpi=80) #新建画布,由于需要在画布上增加子图,所以讲新建的画布赋值一个变量名
fig1 = pic2.add_subplot(2,2,1) #第一个子图(行数,列数,本子图位置)
plt.pie(data2.iloc[0,1:] #选取数据源 第1小学各学科成绩
,labels=['语文','数学','英语']
,autopct='%.2f%%' #设置百分比精度
,shadow=True #显示阴影,增加立体感
,explode=[0.02,0.02,0.02]) #设置饼图各个扇区之间的间隙
# ,colors=['r','g','b']) #设置饼图各个扇区的颜色
plt.title('第1小学各学科成绩占比',fontsize=12)#设置子图的名称
fig2 = pic2.add_subplot(2,2,2) #第二个字图
plt.pie(data2.iloc[1,1:] #选取数据源,第2小学各学科成绩
,labels=['语文','数学','英语']
,autopct='%.2f%%' #设置百分比精度
,shadow=True #显示阴影,增加立体感
,explode=[0.02,0.02,0.02]) #设置饼图各个扇区之间的间隙
# ,colors=['r','g','b']) #设置饼图各个扇区的颜色
plt.title('第2小学各学科成绩占比',fontsize=12)
fig3 = pic2.add_subplot(2,2,3) #第二个字图
plt.pie(data2.iloc[2,1:] #选取数据源,第3小学各学科成绩
,labels=['语文','数学','英语']
,autopct='%.2f%%' #设置百分比精度
,shadow=True #显示阴影,增加立体感
,explode=[0.02,0.02,0.02]) #设置饼图各个扇区之间的间隙
# ,colors=['r','g','b']) #设置饼图各个扇区的颜色
plt.title('第3小学各学科成绩占比',fontsize=12)
fig4 = pic2.add_subplot(2,2,4) #第二个字图
plt.pie(data2.iloc[3,1:] #选取数据源,第4小学各学科成绩
,labels=['语文','数学','英语']
,autopct='%.2f%%' #设置百分比精度
,shadow=True #显示阴影,增加立体感
,explode=[0.02,0.02,0.02]) #设置饼图各个扇区之间的间隙
# ,colors=['r','g','b']) #设置饼图各个扇区的颜色
plt.title('第4小学各学科成绩占比',fontsize=12);
添加子图需要注意的是在新建画布的时候,需要给画布赋值一个变量名,方便添加子图。另外添加几个子图一般是通过子图的行数和列数来确定的,例如上边代码中是2行2列,即一共是4个子图。
效果图如下:
代码中对颜色设定的部分被注释掉了,所以这里的颜色是默认的颜色,美商高的小可爱们可以自行探索颜色的搭配。
matplotlib之饼图,你学会了吗?
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
基于 SPSS 的 ROC 曲线平滑调整方法与实践指南 摘要 受试者工作特征曲线(ROC 曲线)是评估诊断模型或预测指标效能的核心工具, ...
2025-08-25神经网络隐藏层神经元个数的确定方法与实践 摘要 在神经网络模型设计中,隐藏层神经元个数的确定是影响模型性能、训练效率与泛 ...
2025-08-25CDA 数据分析师与数据思维:驱动企业管理升级的核心力量 在数字化浪潮席卷全球的当下,数据已成为企业继人力、物力、财力之后的 ...
2025-08-25CDA数据分析师与数据指标:基础概念与协同逻辑 一、CDA 数据分析师:数据驱动时代的核心角色 1.1 定义与行业价值 CDA(Certified ...
2025-08-22Power Query 移动加权平均计算 Power Query 移动加权平均设置全解析:从原理到实战 一、移动加权平均法的核心逻辑 移动加权平均 ...
2025-08-22描述性统计:CDA数据分析师的基础核心与实践应用 一、描述性统计的定位:CDA 认证的 “入门基石” 在 CDA(Certified Data Analy ...
2025-08-22基于 Python response.text 的科技新闻数据清洗去噪实践 在通过 Python requests 库的 response.text 获取 API 数据后,原始数据 ...
2025-08-21基于 Python response.text 的科技新闻综述 在 Python 网络爬虫与 API 调用场景中,response.text 是 requests 库发起请求后获取 ...
2025-08-21数据治理新浪潮:CDA 数据分析师的战略价值与驱动逻辑 一、数据治理的多维驱动引擎 在数字经济与人工智能深度融合的时代,数据治 ...
2025-08-21Power BI 热力地图制作指南:从数据准备到实战分析 在数据可视化领域,热力地图凭借 “直观呈现数据密度与分布趋势” 的核心优势 ...
2025-08-20PyTorch 矩阵运算加速库:从原理到实践的全面解析 在深度学习领域,矩阵运算堪称 “计算基石”。无论是卷积神经网络(CNN)中的 ...
2025-08-20数据建模:CDA 数据分析师的核心驱动力 在数字经济浪潮中,数据已成为企业决策的核心资产。CDA(Certified Data Analyst)数据分 ...
2025-08-20KS 曲线不光滑:模型评估的隐形陷阱,从原因到破局的全指南 在分类模型(如风控违约预测、电商用户流失预警、医疗疾病诊断)的评 ...
2025-08-20偏态分布:揭开数据背后的非对称真相,赋能精准决策 在数据分析的世界里,“正态分布” 常被视为 “理想模型”—— 数据围绕均值 ...
2025-08-19CDA 数据分析师:数字化时代的价值创造者与决策智囊 在数据洪流席卷全球的今天,“数据驱动” 已从企业战略口号落地为核心 ...
2025-08-19CDA 数据分析师:善用 Power BI 索引列,提升数据处理与分析效率 在 Power BI 数据分析流程中,“数据准备” 是决定后续分析质量 ...
2025-08-18CDA 数据分析师:巧用 SQL 多个聚合函数,解锁数据多维洞察 在企业数据分析场景中,单一维度的统计(如 “总销售额”“用户总数 ...
2025-08-18CDA 数据分析师:驾驭表格结构数据的核心角色与实践应用 在企业日常数据存储与分析场景中,表格结构数据(如 Excel 表格、数据库 ...
2025-08-18PowerBI 累计曲线制作指南:从 DAX 度量到可视化落地 在业务数据分析中,“累计趋势” 是衡量业务进展的核心视角 —— 无论是 “ ...
2025-08-15Python 函数 return 多个数据:用法、实例与实战技巧 在 Python 编程中,函数是代码复用与逻辑封装的核心载体。多数场景下,我们 ...
2025-08-15