京公网安备 11010802034615号
经营许可证编号:京B2-20210330
来源:接地气学堂
作者:接地气的陈老师
很多同学抱怨:每天对着大堆数字,却看不出个名堂。反而有些做业务的人,看几个数字就能马上做出准确判断。咋回事!看着数据没有感觉,是缺少数据洞察力的表现。数据洞察力和操作工具没有关系,完全是一种思维习惯。建立起来以后,不单单对工作有帮助,在生活中用处也很大,今天我们系统讲解下。
1
直观感受下啥叫数据策略分析能力
数字本身没有啥含义,数字+业务场景,才有了具体业务含义。注意,第一张图上的小帅哥会暴走,并不是因为姑娘180身高,而是因为姑娘180把他比得太矮了(且因此受过嘲讽)。“比”才是问题的关键。所以数据本身不形成判断,数据+标准才能形成判断。想读懂数据的含义,一定得看具体业务场景下,业务判断的标准是什么(如下图)。
2
培养洞察力的基本思路
既然洞察力来自数据、业务场景、判断标准的组合,培养洞察力,也是从这三个方向出发,包括:
这一段话看起来很官方,可实际操作起来非常简单,并且我们每个人、每天都在实践。就比如找对象,懵懂的小男生都是挑剔热巴太胖、幂幂头秃,幻想自己找个仙女下凡。可真自己约会相亲追过几个女生,就发现“哦,原来现实中找个美女那么难呀!”
然后真找个“美女”相处一段时间,就发现比起长相,性格、爱好、生活能力、工作能力哪个都更重要。半夜,小哥一个人独自抽着烟,对着月亮,思考:“为毛我要花钱花力气请个姑奶奶回来伺候,我欠抽吗!”的时候,他的洞察力就有了质的飞跃。即使以后再看到漂亮小姑娘,他也会立即明白:这不是我的菜!
在现实生活中,制约洞察力的关键,往往是数据。因为生活中信息不对称问题严重,收集数据的难度太高,还要付出时间、金钱甚至前途、未来这种高额成本。所以在生活中,我们常采用的是有限理性的策略。在可行范围内,尽量用少的数据做决策。或者干脆采用跟随策略,跟着那些比我们优秀的人混。但在企业里,则是完全不同的另一幅场景。
3
培养数据洞察力的难点
在企业工作中,培养数据洞察力最大的难点,是数据、业务场景、标准三者是相互分离的。
这些糟糕状况,都会导致做数据分析的同学们很难积累经验。于是我们常常发现,企业里最有洞察力的人往往是老板。因为在老板那里这三者是透明的,所以即使不操作基础数据,他老人家也能明察秋毫。但这对数据分析师可不是件好事。因为老板还等着我们给意见呢,事事都让老板跑在我们前边,会引发不满的。所以做数据的同学们还是得自己锻炼下洞察力。
4
培养数据洞察力的步骤
很多同学一说要提升洞察力,最喜欢干这三件事:
这三种方法完全没用。这就像一个想谈恋爱的小伙,每天在网上看美女图片一样,自己不动手练,不具体思考,是不可能提升洞察力的。永远不动,永远不会。得想办法自己动手才行。而且往往这些东西内容太多,最后保存在D盘的玩意,你也永远不会看。所以最好从一个具体小点出发。
第一步:从一个场景一个指标开始
做数据的同学,优势在于手上有数据,可以随时查。劣势在于不了解业务场景。因此把数据结合到业务场景中,是破题的关键。最好找一个自己熟悉的业务,有好朋友的部门入手。从理解结果指标开始(如下图)。
第二步:从极值到中间值
理解了指标业务含义,想要形成判断,可以从白犀牛开始——先看指标极大、极小值的时候。这些情况是什么场景,发生什么问题,有什么应对。有了对极值的了解,就行掌握基础的判断标准,也能积累分析假设和分析逻辑。当遇到没有那么极端的情况时,可以顺着已经积累的分析逻辑去理解。实在解读不了,也可以选择再观察观察,看看数据往哪个极端方向发展(如下图)。
第三步:从静态到动态
当我们对静态场景积累的足够的洞察的时候,就能解读动态场景。本质上,动态场景只是一系列静态场景的合集。要额外提醒的是:一个业务变化往往有规律性。一个连续的规律,本身是具有业务含义的。积累周期形态的规律,可以从点到线,提升洞察能力。
第四步:从单指标到多指标
对单指标有了洞察积累,可以往多指标扩展,掌握了结果指标的判断,可以联系过程指标一起看。注意:多指标不是单指标的堆积,拼在一起的时候,也不是每个指标越多越好的。多指标组合时,在特定业务场景下会形成特定的形态,基于形态的解读能做出更准确的判断(如下图)。
掌握了基础形态,后续还能持续观察形态变化,积累更多经验,这样就慢慢能由简入繁,越来越多积累经验,积累多了自然能举一反三了。
要注意的是,换个行业,换个公司,换个产品,换个发展阶段,具体场景都会变化。所以企图追求“万古不变的数据分析真理”,只会让自己在玄学道路上越走越远。想提升洞察力,就多多积累具体场景碎片,提升具体分析能力。具体问题,具体分析,这句话永远不过时。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01在时间序列预测任务中,LSTM(长短期记忆网络)凭借对时序依赖关系的捕捉能力成为主流模型。但很多开发者在实操中会遇到困惑:用 ...
2025-12-01引言:数据时代的“透视镜”与“掘金者” 在数字经济浪潮下,数据已成为企业决策的核心资产,而CDA数据分析师正是挖掘数据价值的 ...
2025-12-01数据分析师的日常,常始于一堆“毫无章法”的数据点:电商后台导出的零散订单记录、APP埋点收集的无序用户行为日志、传感器实时 ...
2025-11-28在MySQL数据库运维中,“query end”是查询执行生命周期的收尾阶段,理论上耗时极短——主要完成结果集封装、资源释放、事务状态 ...
2025-11-28在CDA(Certified Data Analyst)数据分析师的工具包中,透视分析方法是处理表结构数据的“瑞士军刀”——无需复杂代码,仅通过 ...
2025-11-28在统计分析中,数据的分布形态是决定“用什么方法分析、信什么结果”的底层逻辑——它如同数据的“性格”,直接影响着描述统计的 ...
2025-11-27在电商订单查询、用户信息导出等业务场景中,技术人员常面临一个选择:是一次性查询500条数据,还是分5次每次查询100条?这个问 ...
2025-11-27