
前两篇文章介绍了几种常见的条形图,实际上看起来简单的条形图可探索的设置还有很多!在体育赛事中,经常出现一种对称条形图,比如对比两个热门选手或者队伍在各方面的打分情况等,这也是在普通横向条形图的基础上绘制出来的,作为无所不能的python,当然也是可以绘制这种图形的!
闲话少叙,直接上代码吧!
df = pd.read_excel(r"D:\data\football\曼城vs利物浦.xlsx") df
这是从英超历年球队积分的数据中截取出来的曼城和利物浦两支球队的数据,制作一个对称条形图,查看这两只球队在2010–2019年的积分表现。
这是原数据,单看表格对比不是很明显,来画一个对称条形图试试看:
plt.figure(figsize=(10,6)) ax = plt.gca() #获取坐标轴对象 ax.spines['right'].set_color('none') #把右边的边框颜色设置为无色,隐藏右边框 ax.spines['top'].set_color('none') #把上边的边框颜色设置为无色,隐藏上边框 ax.spines['bottom'].set_color('none') #把上边的边框颜色设置为无色,隐藏上边框 ax.yaxis.set_ticks_position('left') #指定左边的边为 y 轴 ax.spines['left'].set_position(('data', 0)) #指定 data 设置的left(也就是指定的y轴)绑定到x轴的0这个点上 plt.xticks([]) #去掉x轴刻度 plt.yticks(df.iloc[:,0].tolist()) #设置y轴刻度为年份 #绘制利物浦队的条形图,颜色用默认的蓝色 plt.barh(df.iloc[:,0],df.iloc[:,1], height=0.5,label = "利物浦") #绘制曼城队的条形图,需要在y轴的两侧显示条形,所以曼城队的数据取负数,设置颜色为粉色 plt.barh(df.iloc[:,0],-df.iloc[:,2],height=0.5,label = "曼城",color = "pink") #通过循环为曼城队的每个横向条形加标签,标签位置在对应条形的顶端,内容为球队当年的积分 for i,j in zip(range(len(df)),[2010,2011,2012,2013,2014,2015,2016,2017,2018,2019]): plt.text(-df.iloc[:,2][i]-5,j,df.iloc[:,2][i]) #通过循环为利物浦队的每个横向条形加标签,标签位置在对应条形的顶端,内容为球队当年的积分 for i,j in zip(range(len(df)),[2010,2011,2012,2013,2014,2015,2016,2017,2018,2019]): plt.text(df.iloc[:,1][i]+1,j,df.iloc[:,1][i]) plt.legend(loc = 4); #显示图例,loc参数指定图例位置在右下角
请看效果图:
是不是比看上边的表格要清晰和容易多了,一眼就能看出每一年两个球队的积分对比情况,整体看来曼城队是强于利物浦队的,至于那个异常的2019年数据,不是全年的数据,所以和其他年份数据差异很大。
对称条形图一般只能对比两个个体之间的各项指标数据,如果涉及多个个体,对称条形图就不怎么好用了。有另一种图可以同时展示多个个体的情况,就是发散型条形图!但是它本身也是有限制的,发散型条形图只能展示在某一个指标上多个个体的不同,而对称条形图是展示两个个体在多个指标上的对比,所以在实际应用中需要区分好需要实现的是什么。
到底是什么样的情况,我们还是直接上代码看图片吧:
df_yc = pd.read_excel(r"D:\data\football\球队排名比分2019.xlsx") df_yc.head(10) #查看前十条数据
这是英超2019年个球队的积分数据:
这是所有球队中在2019年积分排名前十的球队信息,绘图的时候所有球队的数据都会包含。
虽然发散型条形图形式和对称条形图类似,条形都是像两个互为相反的方向延申,然而两者还是有一些不同,对称条形图直接在其中一类数据直接取负数,而发散型条形图是在所有数据上都减掉了整体数据的均值,这样大于均值的数据依然为正,而低于均值的数据就会变成负数:
df_yc.积分.mean() #求所有球队的平均积分 df_yc.积分 = df_yc.积分 - df_yc.积分.mean() #所有球队的积分减掉均值 df_yc.sort_values("积分", inplace=True) #依据减掉均值后的积分进行升序排序 df_yc.head(10) #查看最新的前十条数据
由于条形图在绘制过程中是先从最下边开始画,我们希望最小的数值被画在最下边,由下到上升序排序,所以原数据要进行升序排序。
到这里其实什么都不用设置就可以直接出图了(做个心理建设,直接出的图有点丑):
plt.barh(y =df_yc.iloc[:,0],width=df_yc.iloc[:,1],height=0.3 ,color = colors,alpha=0.5);
是不是和曾经见过的发散型条形图长的差不多,除了丑一点。下边来进行一些完善,美化图形。
完善后的代码可就多了很多呢,具体如下:
plt.figure(figsize=(12,8)) #新建画布,尺寸为12*8 colors = [] #指定条形颜色 for i in df_yc.iloc[:,1]: if i > 0: colors.append("g") #超过均值的数值为绿色 else: colors.append("r") #低于均值的数值为红色 #绘制横向条形图,设置条形透明度为0.5,降低色彩饱和度,看起来更舒服一些 plt.barh(y =df_yc.iloc[:,0],width=df_yc.iloc[:,1],height=0.3 ,color = colors,alpha=0.5) pos = [] #指定要添加文本的x轴位置 for i in df_yc.iloc[:,1]: if i > 0: pos.append(i+0.5) #如果数值高于均值,文本在x轴的位置超过条形顶端0.5的距离 else: pos.append(i- 0.5)#如果数值低于均值,文本在x轴的位置小于条形顶端0.5的距离 for i in range(len(df_yc)): #通过循环为每个条形添加标签值 if pos[i] > 0: #plt.text(x轴方向位置,y轴方向位置,添加的文本信息) plt.text(x = pos[i]+0.5,y = i,s = round(df_yc.iloc[:,1].iloc[i],2)) else: plt.text(x = pos[i]-2,y = i,s = round(df_yc.iloc[:,1].iloc[i],2)) plt.title("2019英超各球队积分排名图(积分均值为30.25)") plt.grid(linestyle='--', alpha=0.5); #配置网格线
效果图:
是不是好看了很多,其实就是设置了画布大小,让整个图看起来不那么局促;然后控制条形的上下宽度,再加上标签方便查看每个条形的数据以及加了网格线,看起来就高大上了许多。
这个图很明显能看出英超球队积分参差不齐,没过均线的球队数量几乎是均线上球队数量的两倍,这也说明了好的球队特别好,把均线拉高了,差的球队数量很多,但是水平倒没有差的太离谱;整体来说还是好的球队更厉害,最好的超均线30分,最差的球队也只低于均线16分。
(本人一点都不懂足球,仅仅从2019年的数据中得到的一点点分析结果,之所以选择英超数据单纯的因为体育数据更容易得到一点而已,所以如果分析的不好,还请轻拍。)
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
“纲举目张,执本末从。”若想在数据分析领域有所收获,一套合适的学习教材至关重要。一套优质且契合需求的学习教材无疑是那关键 ...
2025-06-092025 年,数据如同数字时代的 DNA,编码着人类社会的未来图景,驱动着商业时代的运转。从全球互联网用户每天产生的2.5亿TB数据, ...
2025-05-27CDA数据分析师证书考试体系(更新于2025年05月22日)
2025-05-26解码数据基因:从数字敏感度到逻辑思维 每当看到超市货架上商品的排列变化,你是否会联想到背后的销售数据波动?三年前在零售行 ...
2025-05-23在本文中,我们将探讨 AI 为何能够加速数据分析、如何在每个步骤中实现数据分析自动化以及使用哪些工具。 数据分析中的AI是什么 ...
2025-05-20当数据遇见人生:我的第一个分析项目 记得三年前接手第一个数据分析项目时,我面对Excel里密密麻麻的销售数据手足无措。那些跳动 ...
2025-05-20在数字化运营的时代,企业每天都在产生海量数据:用户点击行为、商品销售记录、广告投放反馈…… 这些数据就像散落的拼图,而相 ...
2025-05-19在当今数字化营销时代,小红书作为国内领先的社交电商平台,其销售数据蕴含着巨大的商业价值。通过对小红书销售数据的深入分析, ...
2025-05-16Excel作为最常用的数据分析工具,有没有什么工具可以帮助我们快速地使用excel表格,只要轻松几步甚至输入几项指令就能搞定呢? ...
2025-05-15数据,如同无形的燃料,驱动着现代社会的运转。从全球互联网用户每天产生的2.5亿TB数据,到制造业的传感器、金融交易 ...
2025-05-15大数据是什么_数据分析师培训 其实,现在的大数据指的并不仅仅是海量数据,更准确而言是对大数据分析的方法。传统的数 ...
2025-05-14CDA持证人简介: 万木,CDA L1持证人,某电商中厂BI工程师 ,5年数据经验1年BI内训师,高级数据分析师,拥有丰富的行业经验。 ...
2025-05-13CDA持证人简介: 王明月 ,CDA 数据分析师二级持证人,2年数据产品工作经验,管理学博士在读。 学习入口:https://edu.cda.cn/g ...
2025-05-12CDA持证人简介: 杨贞玺 ,CDA一级持证人,郑州大学情报学硕士研究生,某上市公司数据分析师。 学习入口:https://edu.cda.cn/g ...
2025-05-09CDA持证人简介 程靖 CDA会员大咖,畅销书《小白学产品》作者,13年顶级互联网公司产品经理相关经验,曾在百度、美团、阿里等 ...
2025-05-07相信很多做数据分析的小伙伴,都接到过一些高阶的数据分析需求,实现的过程需要用到一些数据获取,数据清洗转换,建模方法等,这 ...
2025-05-06以下的文章内容来源于刘静老师的专栏,如果您想阅读专栏《10大业务分析模型突破业务瓶颈》,点击下方链接 https://edu.cda.cn/g ...
2025-04-30CDA持证人简介: 邱立峰 CDA 数据分析师二级持证人,数字化转型专家,数据治理专家,高级数据分析师,拥有丰富的行业经验。 ...
2025-04-29CDA持证人简介: 程靖 CDA会员大咖,畅销书《小白学产品》作者,13年顶级互联网公司产品经理相关经验,曾在百度,美团,阿里等 ...
2025-04-28CDA持证人简介: 居瑜 ,CDA一级持证人国企财务经理,13年财务管理运营经验,在数据分析就业和实践经验方面有着丰富的积累和经 ...
2025-04-27