前景大好的行业分析大数据、快递、物联网、网络营销、新能源,五大基于网络行业 大数据:自从麦肯锡把大数据的相关理论提出之后,随之一大波以数据为中心的商业模式慢慢的显现了出来,现在大数据已经是现在当今 ...
2017-08-16大数据分析停滞不前 信任问题面临大考 有时候大数据分析似乎总是在原地踏步,似乎数据信任的问题阻碍了数据分析的进一步应用。业务领导们理解新数据分析是必须经历的转型,但是他们不确定这种转变是否值得信赖 ...
2017-08-16能源互联网风口将至 如何利用大数据掘金 在集中供热领域,北方各省市供热部门正面临着众多数据孤岛、不能统一运营管理、热网节能难于落地等痛点,所以伴随着一波又一波寒潮袭来的同时,还有各种投诉电话的苦恼 ...
2017-08-15大数据加速向传统产业渗透 目前,对大数据的应用已融入我们生活的各个方面。世界三大航空发动机生产商之一罗尔斯·罗伊斯卖出的每一台航空发动机,内部都安装了上百个传感器,详细记录并保存工作时所有细节。这 ...
2017-08-15物联网产生大数据推进智慧城市建设 随着物联网的应用增多,越来越多的来自传感器和设备的数据不断产生,比如对基础设施的监控、环境感知、智能家居、楼宇信息、汽车与交通运输设备、智能电表以及各种移动设备上 ...
2017-08-15人工智能、大数据的十大类算法及其擅长的任务 AI正在改变我们的职业、我们的工作方式和我们的企业文化。AI让我们得以专注于那些真正关键的技术,让人力资源得以充分发挥他们的长处。但在工作场景中应用AI确实会 ...
2017-08-15我国企业大数据发展现状与应用总揽之分析 飞速发展的大数据产业除了改变人们生活的方方面面、促进社会快速进步之外,也为企业这个社会主体带来了更为直观和有效的影响。 我国企业大数据发展现状与应用总揽之 ...
2017-08-15物联网大数据被激发的三个特征 虽然数据本身是客观存在的,但是它的范畴是随着文明的进程不断变化和扩大的。在万物互联时代,大数据的几个重要特征将会被成倍放大,并最终形成特殊的应用场景及商业模式。 数 ...
2017-08-15大数据分析,半导体技术必不可少 在半导体领域,“大数据分析”作为新的增长市场而备受期待。这是因为进行大数据分析时,除了微处理器之外,还需要高速且容量大的新型存储器。在某网站主办的研讨会上,日本中央 ...
2017-08-14大数据应用程序复杂多样 企业又该如何部署 如今,大数据应用程序比常规应用程序复杂10倍,开发人员通常需要了解大量的技术,以使大数据能够正常工作。 大数据的应用仍然太难了。尽管有很多的炒作的成分,但 ...
2017-08-14大数据无处不在 企业实践指南有哪些 在我们身处的时代,数据无处不在。据IBM公司估算,人类每天产生约2.5万ZB的数据,这意味着世界上90%数据都是过去的两年中产生的。Gartner公司分析报告显示,在2015年财富5 ...
2017-08-14大数据来袭解密互联汽车 数字世界催生了无处不在的连接需求。如今,消费者希望即使身在旅途也能享受各类数字化体验,就像在办公室、在家里或其他地方一样。在这种需求的驱动下,汽车正在经历从交通工具到巨型移 ...
2017-08-148大工业大数据的应用场景,抢先看物联网时代 工业大数据是一个全新的概念,从字面上理解,工业大数据是指在工业领域信息化应用中所产生的大数据。 随着信息化与工业化的深度融合,信息技术渗透到了工业企业产 ...
2017-08-14大数据的价值,是商业的方向 电气时代带给人们的是电,爱迪生发明的是直流电,要在很短的距离内建输电的装置,才能保证电的传输,按照爱迪生的设想,地球上会建满输电装置,但是,很快就出现了交流电,所以现在 ...
2017-08-13大数据时代:个人隐私信息如何保护 对海量数据的分析挖掘能创造巨大的物质财富和社会价值。然而,数据的大量聚集导致隐私泄露无处不在,个人、企业的信息安全面临严重威胁,亟待通过完善法律法规等方式予以解决 ...
2017-08-13工业4.0 大数据崛起重塑商业社会 18世纪从英国发起的技术革命是技术发展史上的一次巨大革命,它开创了以机器代替手工工具的时代。以机械化,蒸汽机为标志。19世纪最后30年和20世纪初,科学技术的进步和工业生产 ...
2017-08-13互联网时代大数据究竟是什么 “大数据”是近年来IT行业的热词,大数据在各个行业的应用逐渐变得广泛起来。那么,什么是大数据?大数据时代怎么理解呢? 大数据的定义:大数据,又称巨量资料,指的是所涉及的 ...
2017-08-13Python中绑定与未绑定的类方法用法分析 文实例讲述了Python中绑定与未绑定的类方法。分享给大家供大家参考,具体如下: 像函数一样,Python中的类方法也是一种对象。由于既可以通过实例也可以通过类来访问方 ...
2017-08-13大数据的产业链分析 大数据的产业链分析大数据完整的产业链构成如下图所示,可分为标准与规范、数据安全、数据采集、数据存储与管理、数据分析与挖掘、数据运维以及数据应用几个环节,覆盖了数据从产生到应用的 ...
2017-08-13一次性总结大数据、人工智能、区块链、云计算在金融领域的全景应用 大数据在金融领域的创新影响力巨大,金融创新很大一部分原因在于大数据与金融之间的结合。数据维度越丰富,对用户粗颗粒的画像就会越了解。在 ...
2017-08-13Pandas 选取特定值所在行:6 类核心方法与实战指南 在使用 pandas 处理结构化数据时,“选取特定值所在的行” 是最高频的操作之 ...
2025-09-30球面卷积神经网络(SCNN) 为解决这一痛点,球面卷积神经网络(Spherical Convolutional Neural Network, SCNN) 应运而生。它通 ...
2025-09-30在企业日常运营中,“未来会怎样” 是决策者最关心的问题 —— 电商平台想知道 “下月销量能否达标”,金融机构想预判 “下周股 ...
2025-09-30Excel 能做聚类分析吗?基础方法、进阶技巧与场景边界 在数据分析领域,聚类分析是 “无监督学习” 的核心技术 —— 无需预设分 ...
2025-09-29XGBoost 决策树:原理、优化与工业级实战指南 在机器学习领域,决策树因 “可解释性强、处理非线性关系能力突出” 成为基础模型 ...
2025-09-29在标签体系的落地链路中,“设计标签逻辑” 只是第一步,真正让标签从 “纸上定义” 变为 “业务可用资产” 的关键,在于标签加 ...
2025-09-29在使用 Excel 数据透视表进行多维度数据汇总时,折叠功能是梳理数据层级的核心工具 —— 通过点击 “+/-” 符号可展开明细数据或 ...
2025-09-28在使用 Pandas 处理 CSV、TSV 等文本文件时,“引号” 是最容易引发格式混乱的 “隐形杀手”—— 比如字段中包含逗号(如 “北京 ...
2025-09-28在 CDA(Certified Data Analyst)数据分析师的技能工具箱中,数据查询语言(尤其是 SQL)是最基础、也最核心的 “武器”。无论 ...
2025-09-28Cox 模型时间依赖性检验:原理、方法与实战应用 在生存分析领域,Cox 比例风险模型(Cox Proportional Hazards Model)是分析 “ ...
2025-09-26检测因子类型的影响程度大小:评估标准、实战案例与管控策略 在检测分析领域(如环境监测、食品质量检测、工业产品合规性测试) ...
2025-09-26CDA 数据分析师:以数据库为基石,筑牢数据驱动的 “源头防线” 在数据驱动业务的链条中,“数据从哪里来” 是 CDA(Certified D ...
2025-09-26线性相关点分布的四种基本类型:特征、识别与实战应用 在数据分析与统计学中,“线性相关” 是描述两个数值变量间关联趋势的核心 ...
2025-09-25深度神经网络神经元个数确定指南:从原理到实战的科学路径 在深度神经网络(DNN)的设计中,“神经元个数” 是决定模型性能的关 ...
2025-09-25在企业数字化进程中,不少团队陷入 “指标困境”:仪表盘上堆砌着上百个指标,DAU、转化率、营收等数据实时跳动,却无法回答 “ ...
2025-09-25MySQL 服务器内存碎片:成因、检测与内存持续增长的解决策略 在 MySQL 运维中,“内存持续增长” 是常见且隐蔽的性能隐患 —— ...
2025-09-24人工智能重塑工程质量检测:核心应用、技术路径与实践案例 工程质量检测是保障建筑、市政、交通、水利等基础设施安全的 “最后一 ...
2025-09-24CDA 数据分析师:驾驭通用与场景指标,解锁数据驱动的精准路径 在数据驱动业务的实践中,指标是连接数据与决策的核心载体。但并 ...
2025-09-24在数据驱动的业务迭代中,AB 实验系统(负责验证业务优化效果)与业务系统(负责承载用户交互与核心流程)并非独立存在 —— 前 ...
2025-09-23CDA 业务数据分析:6 步闭环,让数据驱动业务落地 在企业数字化转型中,CDA(Certified Data Analyst)数据分析师的核心价值,并 ...
2025-09-23