
大数据应用程序复杂多样 企业又该如何部署
如今,大数据应用程序比常规应用程序复杂10倍,开发人员通常需要了解大量的技术,以使大数据能够正常工作。
大数据的应用仍然太难了。尽管有很多的炒作的成分,但大多数企业仍然努力从他们的数据中获得价值。而Dresner咨询服务公司得出结论:“尽管长时间的意识培养和炒作,大数据分析的实际部署目前并不广泛适用于大多数组织。”
这是人员的问题。尽管有说服力的数据,企业高管们往往宁愿忽略这些数据。但是,大数据复杂性的一大部分是因为所需要的软件。虽然Spark和其他更新的系统已经改善了轨迹,但大数据基础设施仍然太难了,这是杰西·安德森精明的一点。
实施起来困难
长期以来,人才一直是大数据采用的最大障碍之一。2015年Bain&Co.公司通过对高级IT主管调查发现,59%的受访者认为他们的公司缺乏对数据和业务有意义的能力。调查机构Gartner公司分析师尼克·荷德科特别指出,“到2018年,由于技能和集成的挑战,70%的Hadoop部署将无法满足成本节省和收入目标。”人员的技能很重要,换句话说,相关人才供不应求。
随着时间的推移,人员的技能差距将会减少,当然,但是了解平均Hadoop部署是不平凡的。安德森指出,大数据的复杂性归结为两个主要因素:“你需要掌握10到30种不同的技术,只是为了创建一个大数据解决方案。而采用分布式系统是比较简单的”。
大数据应用程序复杂多样 企业又该如何部署?
问题是什么
安德森表示典型的移动应用程序与Hadoop支持的应用程序的复杂性,注意后者涉及“盒子”或组件的数量的两倍。然而,用简单的词语表达,“Hadoop解决方案的‘Hello World’比其他域中到高级设置更复杂。
安德森说,人们面临复杂的困难,是需要了解涉及的广泛的系统。例如,人们可能需要知道10种技术来构建大数据应用程序,但这可能需要熟悉另外20种技术,只需知道在给定情况下使用哪种技术即可。否则,例如,你将如何知道使用MongoDB而不是Hbase?还是Cassandra?或neo4j?
此外,在分布式系统中运行有其复杂性,而大数据的技能短缺依然存在。
简单的出路
企业正在努力尽量减少在大数据构建中所固有的复杂性的一种方法是转向公共云。根据最近的Databricks对Apache Spark用户的调查,Spark到公共云的部署在过去一年中增长了10%,达到了总体部署的61%。云计算代替了那些繁琐以及不灵活的内部部署基础设施,可以提供灵活性。
然而,它并不能消除所涉及的技术的复杂性。关于此或数据库或消息代理的相同选择仍然存在。这种选择,以及其中的复杂性,不会很快消失。像Cloudera和Hortonworks这样的公司已经尝试简化这些选择,将它们整合到堆栈中,但是它们仍然基本上提供需要被理解以便有用的工具。Amazon Web Services公司通过其Lambda服务进一步发展,这使得开发人员能够专注于编写应用程序代码,而AWS负责所有底层基础架构。
但下一步是完全为最终用户预先制作应用程序,这是华尔街分析师彼得·戈德马克所说的销售基础设施组件的更大的机会。用他的话来说,一个主要类别的“获奖者”是应用和分析供应商,它将基础技术的复杂性抽象为一个用户友好的前端。企业用户的可寻址的受众将比程序员的市场致力于核心技术。
这是市场需要去的地方,而且是快速的。人们几乎没有做过。对于每个能够掌握所有的相关的大数据技术公司,包括那些高端产业的企业,只是想只是希望重塑自己,需要有人使他们的数据更具可操作性,人们现在需要这类供应商出现。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22在企业数据分析中,“数据孤岛” 是制约分析深度的核心瓶颈 —— 用户数据散落在注册系统、APP 日志、客服记录中,订单数据分散 ...
2025-10-22在神经网络设计中,“隐藏层个数” 是决定模型能力的关键参数 —— 太少会导致 “欠拟合”(模型无法捕捉复杂数据规律,如用单隐 ...
2025-10-21在特征工程流程中,“单变量筛选” 是承上启下的关键步骤 —— 它通过分析单个特征与目标变量的关联强度,剔除无意义、冗余的特 ...
2025-10-21在数据分析全流程中,“数据读取” 常被误解为 “简单的文件打开”—— 双击 Excel、执行基础 SQL 查询即可完成。但对 CDA(Cert ...
2025-10-21在实际业务数据分析中,我们遇到的大多数数据并非理想的正态分布 —— 电商平台的用户消费金额(少数用户单次消费上万元,多数集 ...
2025-10-20在数字化交互中,用户的每一次操作 —— 从电商平台的 “浏览商品→加入购物车→查看评价→放弃下单”,到内容 APP 的 “点击短 ...
2025-10-20在数据分析的全流程中,“数据采集” 是最基础也最关键的环节 —— 如同烹饪前需备好新鲜食材,若采集的数据不完整、不准确或不 ...
2025-10-20在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15