京公网安备 11010802034615号
经营许可证编号:京B2-20210330
电商当道,实体行业好像迎来了寒冬,凛冽的网购风潮一阵接一阵刮倒一批批实体店,实体店高昂的租金成了压死骆驼的最后一根稻草。对于网购的优势,据中国消费者报调查表明:半数以上的人觉得网购价格便宜,30%的人觉得商品丰富选择更多,10%的人觉得便利快捷。电商在大数据收集和运用中更具灵活性,瞄准目标受众,从传统行业以产品为导向的传统营销模式像以消费者为导向的精确营销模式,此类的精准化营销也成了倒逼实体店改革的推手,那么实体店如何跟上步伐,运用好大数据。在互联网时代打场翻身仗。
什么是大数据
大数据(Big Data)是指数据规模大到不能使用传统分析方法在合理时间内进行有效的处理。大数据不仅仅指数据规模大,还包括数据处理和数据应用,是数据对象、数据分析、数据应用三者的统一。大数据是指利用常用软件工具捕获、管理和处理数据所耗时间超过可容忍时间的数据集。大数据的核心就是预测,通过运用数学算法对海量数据进行分析,可预测事情发展的趋势,这将使人们的生活达到一个可量化的维度。大数据的特征可用四个V概括:数据量很大(Volume),通常指规模在10TB以上的数据集;数据类型多样(Variety),如声音、地理位置信息、文本、视频、网络日志、图片等;数据产生和处理速度快(Velocity);价值密度低(Value),在大量数据中有价值的信息相对较少,比如一段监控视频只有几秒的画面是有用的信息。
什么是精准营销
莱斯特·伟门认为要以消费者和销售商为中心,利用电子媒介等方式,建立消费者、销售商资料库,然后通过科学分析,对消费者进行细分,不仅用分析来引导销售商制定可行的销售推广方案,同时为生产商提供产品设计和制造参考。而对于现今流行的内容生产和消费来说,则是要进行受众细分,给予受众充分的选择权。投受众所好,有目的地内容生产。
在越发激烈的市场竞争面前,产品的利润空间不断压缩,在正确的时间将正确的产品销售给正确的消费者,是零售企业管理者普遍面临的一个难题。与此同时,消费者的消费习惯发生了重大的改变,消费者能通过各种手段了解到各式的产品信息,货比三家不说,越来越注重自己的消费体验。企业被迫要改变以往消费方式,注重消费者个性化需求并且预测到消费者,那么通过什么手段才能掌握这些数据信息并且将它运用到生产营销中去,最终达到获取利润。
1、数据收集
使用大数据的基础是大数据的收集。通过POS机、观测设备、移动终端、互联网、智能终端等收集企业与顾客的交互数据,同时在企业运营过程中重视对商品数据、销售数据、会员关系数据等交易数据的收集。另外,企业外部的数据如市场调查数据、专家意见、第三方机构数据等也可收集,并对数据进行清洗、重构、填补,保证数据质量,补充到数据库。根据企业的商业目标,对数据进行分类,将原始数据整理为目标数据集。
2、细分消费者
根据二八原则,企业80%的利润是由20%的重要消费者创造的。企业就针对这20%的消费者的需求进行重点满足。就避免了和同行竞争者正面交锋,企业只要把握住了这二十的消费者,那么营销资源的利用率和利用效果都能得到大幅度提升。差异化可能会丢掉一部分消费者,但是留住的这百分之二十的忠实消费者能够为企业带来真正的价值。同时消费者价值进行定位后,消费行为规律,预测其消费需求。
最著名的是市场购物篮分析,主要是将两件看似毫不相关的商品通过关联分析、神经网络分析。序列模式分析在此基础上,不仅考率商品间的关系,也考虑一些消费者在购买商品是的周期规律。而且从中找出差异产生的原因。
3、有目的的营销活动
在互联网发展之前,企业的营销活动都是盲目的,确立目标受众也是撒大网捞小鱼,被动的营销。互联网出现以后,企业有各种手段进行信息的采集和处理,在消费者细分和购物篮分析两种应用的支持下,将企业产品的卖点与消费者的需求进行匹配,将个性的商品推荐给不同类型的消费者,增加交叉销售和增量销售的机会。也便于企业设立明确的营销目标,比如优化消费者价值、获取新消费者、实现消费者保持、实现交叉销售和增量销售,最终提升企业利润。通过营销活动,将以前低价值消费者转换为重要消费者,并保持其忠诚度。在此期间,可用购买者效用图来评估营销方案可行性,利用大众价格走廊评判价格定制的合理性。
至于实体店和电商之间的消费者争夺战只是融合过渡阶段的一个表现,未来电商会通过线下实体的方式来进行体验式消费缺口的弥补,而实体企业也会通过互联网来进行消费者习惯搜集和处理,线上线下整合营销。企业要极尽所能拥抱变化,而非对变化掩目不见。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在 MySQL 数据查询中,“按顺序计数” 是高频需求 —— 例如 “统计近 7 天每日订单量”“按用户 ID 顺序展示消费记录”“按产品 ...
2025-10-31在数据分析中,“累计百分比” 是衡量 “部分与整体关系” 的核心指标 —— 它通过 “逐步累加的占比”,直观呈现数据的分布特征 ...
2025-10-31在 CDA(Certified Data Analyst)数据分析师的工作中,“二分类预测” 是高频需求 —— 例如 “预测用户是否会流失”“判断客户 ...
2025-10-31在 MySQL 实际应用中,“频繁写入同一表” 是常见场景 —— 如实时日志存储(用户操作日志、系统运行日志)、高频交易记录(支付 ...
2025-10-30为帮助教育工作者、研究者科学分析 “班级规模” 与 “平均成绩” 的关联关系,我将从相关系数的核心定义与类型切入,详解 “数 ...
2025-10-30对 CDA(Certified Data Analyst)数据分析师而言,“相关系数” 不是简单的数字计算,而是 “从业务问题出发,量化变量间关联强 ...
2025-10-30在构建前向神经网络(Feedforward Neural Network,简称 FNN)时,“隐藏层数目设多少?每个隐藏层该放多少个神经元?” 是每个 ...
2025-10-29这个问题切中了 Excel 用户的常见困惑 —— 将 “数据可视化工具” 与 “数据挖掘算法” 的功能边界混淆。核心结论是:Excel 透 ...
2025-10-29在 CDA(Certified Data Analyst)数据分析师的工作中,“多组数据差异验证” 是高频需求 —— 例如 “3 家门店的销售额是否有显 ...
2025-10-29在数据分析中,“正态分布” 是许多统计方法(如 t 检验、方差分析、线性回归)的核心假设 —— 数据符合正态分布时,统计检验的 ...
2025-10-28箱线图(Box Plot)作为展示数据分布的核心统计图表,能直观呈现数据的中位数、四分位数、离散程度与异常值,是质量控制、实验分 ...
2025-10-28在 CDA(Certified Data Analyst)数据分析师的工作中,“分类变量关联分析” 是高频需求 —— 例如 “用户性别是否影响支付方式 ...
2025-10-28在数据可视化领域,单一图表往往难以承载多维度信息 —— 力导向图擅长展现节点间的关联结构与空间分布,却无法直观呈现 “流量 ...
2025-10-27这个问题问到了 Tableau 中两个核心行级函数的经典组合,理解它能帮你快速实现 “相对位置占比” 的分析需求。“index ()/size ( ...
2025-10-27对 CDA(Certified Data Analyst)数据分析师而言,“假设检验” 绝非 “套用统计公式的机械操作”,而是 “将模糊的业务猜想转 ...
2025-10-27在数字化运营中,“凭感觉做决策” 早已成为过去式 —— 运营指标作为业务增长的 “晴雨表” 与 “导航仪”,直接决定了运营动作 ...
2025-10-24在卷积神经网络(CNN)的训练中,“卷积层(Conv)后是否添加归一化(如 BN、LN)和激活函数(如 ReLU、GELU)” 是每个开发者都 ...
2025-10-24在数据决策链条中,“统计分析” 是挖掘数据规律的核心,“可视化” 是呈现规律的桥梁 ——CDA(Certified Data Analyst)数据分 ...
2025-10-24在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23