京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据来袭解密互联汽车
数字世界催生了无处不在的连接需求。如今,消费者希望即使身在旅途也能享受各类数字化体验,就像在办公室、在家里或其他地方一样。在这种需求的驱动下,汽车正在经历从交通工具到巨型移动设备的转型。据估计,到2020年,将有1.52亿辆互联汽车上路,每年产生11PB数据1。从移动设备的激增到物联网的蓬勃发展,各种技术力量亦在加速这种转变,使汽车成为当今信息网络中不可或缺的组成部分。现在,汽车既能接收数据,也能将数据发至云端、交通基础设施以及其他车辆。我们能否充分挖掘互联汽车的价值,与这些数据直接相关。
IT世界的机遇
目前,汽车已产生大量数据,而随着各项功能的扩充,数据量只会进一步增加,汽车也将成为数据制造大户。IT经理们现在应该考虑:如何从中挖掘有意义的信息,用于商业模式的改进。同时,驾驶员亦可根据自己的偏好调整隐私设置,决定共享多少数据。通过对数据加以分析,汽车制造商能够更加了解用户以及车内的各项状况。此外,这些数据还能帮助市场、工程及IT机构携手改进车内体验。通过利用CRM数据和增进对驾驶员行为及偏好的了解,汽车制造商可以更好地满足用户需求,在恰当的时间提供恰当的体验,如向驾驶员发出疲劳警告、汽车故障预警,然后主动帮助解决问题,通过观察发展趋势,积极做好准备以防患于未然。更重要的是,在此基础之上,汽车制造商可以有效降低成本,开发出更好的汽车。
呼唤大数据分析
通过多层数据分析,我们可以实现诸如交通事故警告、天气预报等新型服务。数据将从车辆传感器传至云端,实时获取驾驶员当下所需的信息,这意味着汽车必须拥有自主分析数据以及征询云端反馈的能力。汽车制造商需要考虑整个数据处理周期,包括汽车与云、汽车与交通基础设施以及车与车之间的数据传送。从传感控制器到网关、从云端到客户端、从汽车到基础设施,每个环节都涉及有效信息的抽取和数据价值的挖掘。之后,数据分析的结果将与其他车辆以及交通基础设施分享,并向驾驶员提交建议结果以便防患于未然。
通过了解其生产的所有车辆情况,汽车制造商得以为车主提供更好的服务。例如,当汽车出现某些问题,用户可以第一时间向汽车制造商咨询这类情况是否需要高昂的修理费用或存在任何安全隐患,甚至根据数据分析结果预约上门维修服务或提前预订零部件,以尽可能减少这些问题带来的不便。为了支持自主驾驶以及高级驾驶员辅助系统(ADAS)等先进技术,强大的计算能力不可或缺,需要车辆与安全可靠的数据中心主干建立高速连接,以在云端进行群数据分析。
确保安全与隐私
随着越来越多的车辆及交通基础设施实现互联,对于汽车制造商和用户来说,安全可靠地保存和收发数据至关重要。信息安全和车辆安全密不可分,因为来自虚拟世界的恶意攻击很有可能导致实实在在的技术故障。先进技术的推陈出新与汽车制造商对上述要求的响应速度紧密相关。车辆亦需根据这些数据及其来源快速、准确地做出决策。只有采用多层分析模式,车辆才能充分利用各项数据,自主进行分析。此外,在保护用户隐私之余,所有互联汽车的被盗风险亦可被降低。
未来的驾驶体验
曾有调查显示,几乎一半的美国人希望拥有无人驾驶汽车,其中超过1/3的人相信,近10年就可以实现这一愿望。随着自主驾驶这一理念越来越受追捧,汽车制造商必须重新思考如何设计新型汽车,将其打造成为一个多系统运行平台,这些系统可以彼此通信、相互协作并主动提供有效建议。英特尔正在积极运用自己的创新技术和专长,与汽车行业紧密合作,助力全新的车内体验!
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
B+树作为数据库索引的核心数据结构,其高效的查询、插入、删除性能,离不开节点间指针的合理设计。在日常学习和数据库开发中,很 ...
2026-01-30在数据库开发中,UUID(通用唯一识别码)是生成唯一主键、唯一标识的常用方式,其标准格式包含4个短横线(如550e8400-e29b-41d4- ...
2026-01-30商业数据分析的价值落地,离不开标准化、系统化的总体流程作为支撑;而CDA(Certified Data Analyst)数据分析师,作为经过系统 ...
2026-01-30在数据分析、质量控制、科研实验等场景中,数据波动性(离散程度)的精准衡量是判断数据可靠性、稳定性的核心环节。标准差(Stan ...
2026-01-29在数据分析、质量检测、科研实验等领域,判断数据间是否存在本质差异是核心需求,而t检验、F检验是实现这一目标的经典统计方法。 ...
2026-01-29统计制图(数据可视化)是数据分析的核心呈现载体,它将抽象的数据转化为直观的图表、图形,让数据规律、业务差异与潜在问题一目 ...
2026-01-29箱线图(Box Plot)作为数据分布可视化的核心工具,能清晰呈现数据的中位数、四分位数、异常值等关键统计特征,广泛应用于数据分 ...
2026-01-28在回归分析、机器学习建模等数据分析场景中,多重共线性是高频数据问题——当多个自变量间存在较强的线性关联时,会导致模型系数 ...
2026-01-28数据分析的价值落地,离不开科学方法的支撑。六种核心分析方法——描述性分析、诊断性分析、预测性分析、规范性分析、对比分析、 ...
2026-01-28在机器学习与数据分析领域,特征是连接数据与模型的核心载体,而特征重要性分析则是挖掘数据价值、优化模型性能、赋能业务决策的 ...
2026-01-27关联分析是数据挖掘领域中挖掘数据间潜在关联关系的经典方法,广泛应用于零售购物篮分析、电商推荐、用户行为路径挖掘等场景。而 ...
2026-01-27数据分析的基础范式,是支撑数据工作从“零散操作”走向“标准化落地”的核心方法论框架,它定义了数据分析的核心逻辑、流程与目 ...
2026-01-27在数据分析、后端开发、业务运维等工作中,SQL语句是操作数据库的核心工具。面对复杂的表结构、多表关联逻辑及灵活的查询需求, ...
2026-01-26支持向量机(SVM)作为机器学习中经典的分类算法,凭借其在小样本、高维数据场景下的优异泛化能力,被广泛应用于图像识别、文本 ...
2026-01-26在数字化浪潮下,数据分析已成为企业决策的核心支撑,而CDA数据分析师作为标准化、专业化的数据人才代表,正逐步成为连接数据资 ...
2026-01-26数据分析的核心价值在于用数据驱动决策,而指标作为数据的“载体”,其选取的合理性直接决定分析结果的有效性。选对指标能精准定 ...
2026-01-23在MySQL查询编写中,我们习惯按“SELECT → FROM → WHERE → ORDER BY”的语法顺序组织语句,直觉上认为代码顺序即执行顺序。但 ...
2026-01-23数字化转型已从企业“可选项”升级为“必答题”,其核心本质是通过数据驱动业务重构、流程优化与模式创新,实现从传统运营向智能 ...
2026-01-23CDA持证人已遍布在世界范围各行各业,包括世界500强企业、顶尖科技独角兽、大型金融机构、国企事业单位、国家行政机关等等,“CDA数据分析师”人才队伍遵守着CDA职业道德准则,发挥着专业技能,已成为支撑科技发展的核心力量。 ...
2026-01-22在数字化时代,企业积累的海量数据如同散落的珍珠,而数据模型就是串联这些珍珠的线——它并非简单的数据集合,而是对现实业务场 ...
2026-01-22