京公网安备 11010802034615号
经营许可证编号:京B2-20210330
人工智能、大数据的十大类算法及其擅长的任务
AI正在改变我们的职业、我们的工作方式和我们的企业文化。AI让我们得以专注于那些真正关键的技术,让人力资源得以充分发挥他们的长处。但在工作场景中应用AI确实会让事情变得复杂,因为有各种不同层级的算法可以用于实现AI,每一类的使用和影响都有差别。为了更好地平衡人力资本和AI资本,本文作者介绍了用于实现AI、大数据、和数据科学的十大类算法,以及它们分别擅长的任务。
算法正在取代我们的工作吗?是。。。是的。。。但算法是个好东西。
算法是一系列包含能够帮助人解决问题、完成目标任务的规则的步骤。用正确的方式把这些步骤和规则组织起来,能够自动化算法建立人工智能(AI)。AI能够帮助我们做大量的分析性工作,让我们把时间集中于更有价值的事情。
AI正在改变我们的职业、我们的工作方式和我们的企业文化。AI让我们得以专注于那些真正关键的技术,让人力资源得以充分发挥他们的长处。但在工作场景中应用AI确实会让事情变得复杂,因为有各种不同层级的算法可以用于实现AI,每一类的使用和影响都有差别。为了更好地平衡人力资本和AI资本,本文介绍了用于实现AI、大数据、和数据科学的十大类算法。
1. Crunchers
这些算法使用比较少的重复步骤和较为简单的规则处理(crunch)复杂问题。我们给这些算法提供数据,它们就能得出一个答案。如果我们不喜欢这个答案,可以给算法提供更多的数据,让算法调整答案。Cruncher类算法擅长客户分类、预估项目持续时间、分析调查数据等任务。
2. Guides
这些算法为我们怎样根据成功的历史操作得出最好的策略、步骤或工作流提供指南(guides)。指南类算法擅长协调大量需要理解并执行如风险管理、战略改变、复杂项目管理等事情的动态部件。
3. Advisors
这些算法基于历史规律为我们提供预测、排名、成功的可能性等,对我们提出最佳选择的建议(advise)。建议类(advisors)算法擅长提出决策、规划和风险缓解方面的建议。
4. Predictors
这些算法使用解释历史行为和历史事件的小型可重复性决定和判断来对未来的人类行为和事件作出预测。预测类(predictors)算法擅长商业规划、市场预测、品牌管理、健康诊断,以及预测消费者行为、品牌吸引力、欺诈行为、营销机会、气候事件以及疾病爆发等。
5. TacTIcians
这些算法在战术上(tacTIcally)预先考虑短期行为并作出相应的反应。它们通过应用短期战术规则(short-term tacTIcal rules)的组合以及从相关人员中学来的信息做到这一点。战术类(tacTIcians)算法擅长平衡供应链、系统性能、人力工作负荷和生产线。
6. Strategists
这些算法从策略上(strategically)预测行为并作相应的计划。策略类(strategists)算法根据过去的数据发掘洞察和创新机会。它们通过应用短期规则和长期规则的组合、从相关人员中学来的信息以及这些人在不同的环境中的反应来做到这一点。策略类(strategists)算法擅长预测市场需求、客户流失、工作效率以及员工流失。
7. Lifters
这些算法能够代替我们自动完成重复性的任务,让我们能够专注于更有价值的工作。lifters类算法擅长分析和识别规则、欺诈行为、风险、改进、转型、机会和创新等中重复的模式和差距。
8. Partners
这些算法具有我们的领域中的许多专业知识,能让我们更高效、更专注。合作伙伴类(partners)算法擅长为我们提出建议、提供训练,让我们密切了解市场变化,并调整每日、每季度以及每年的目标。Partners理解我们的行为模式,知道我们何时应该吃午饭,气温达到几度时需要开空调等等。
9. Okays
这些算法在多个领域具有专业知识,能够代替我们的团队完成全部分析工作。算法完成分析后,团队中的每个人分别根据自己的专业技能审核分析结果,然后通过(okay)结果。Okays类算法擅长从各个角度深入分析物体构建大型图像,可用于业务规划、战略改变、文化转型等。
10. Supervisors
这些算法对我们的工作具有关键作用。它们能够管理工作者及其业务,使企业保持生产效率和财力的强健。监督类(supervisors)算法能够协调人力一起其他算法,帮助我们实现长期的战略发展目标。
AI是我们在全球商业舞台上生存的关键。仅以人类资本参与竞争是不够的,我们不仅需要AI来代替我们自动化工作,让我们的创新力有更大的发挥,而且需要AI 来改变我们的行为、习惯以及工作风格,以使我们保持竞争力。为了保持我们的竞争优势,我们必须理解AI如何工作,同时AI也必须理解我们如何工作。而为了理解我们如何工作,AI必须理解情绪智能(Emotional Intelligence)。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据分析实战中,我们经常会遇到“多指标冗余”的问题——比如分析企业经营状况时,需同时关注营收、利润、负债率、周转率等十 ...
2026-02-04在数据分析场景中,基准比是衡量指标表现、评估业务成效、对比个体/群体差异的核心工具,广泛应用于绩效评估、业务监控、竞品对 ...
2026-02-04业务数据分析是企业日常运营的核心支撑,其核心价值在于将零散的业务数据转化为可落地的业务洞察,破解运营痛点、优化业务流程、 ...
2026-02-04在信贷业务中,违约率是衡量信贷资产质量、把控信用风险、制定风控策略的核心指标,其统计分布特征直接决定了风险定价的合理性、 ...
2026-02-03在数字化业务迭代中,AB测试已成为验证产品优化、策略调整、运营活动效果的核心工具。但多数业务场景中,单纯的“AB组差异对比” ...
2026-02-03企业战略决策的科学性,决定了其长远发展的格局与竞争力。战略分析方法作为一套系统化、专业化的思维工具,为企业研判行业趋势、 ...
2026-02-03在统计调查与数据分析中,抽样方法分为简单随机抽样与复杂抽样两大类。简单随机抽样因样本均匀、计算简便,是基础的抽样方式,但 ...
2026-02-02在数据驱动企业发展的今天,“数据分析”已成为企业经营决策的核心支撑,但实践中,战略数据分析与业务数据分析两个概念常被混淆 ...
2026-02-02在数据驱动企业发展的今天,“数据分析”已成为企业经营决策的核心支撑,但实践中,战略数据分析与业务数据分析两个概念常被混淆 ...
2026-02-02B+树作为数据库索引的核心数据结构,其高效的查询、插入、删除性能,离不开节点间指针的合理设计。在日常学习和数据库开发中,很 ...
2026-01-30在数据库开发中,UUID(通用唯一识别码)是生成唯一主键、唯一标识的常用方式,其标准格式包含4个短横线(如550e8400-e29b-41d4- ...
2026-01-30商业数据分析的价值落地,离不开标准化、系统化的总体流程作为支撑;而CDA(Certified Data Analyst)数据分析师,作为经过系统 ...
2026-01-30在数据分析、质量控制、科研实验等场景中,数据波动性(离散程度)的精准衡量是判断数据可靠性、稳定性的核心环节。标准差(Stan ...
2026-01-29在数据分析、质量检测、科研实验等领域,判断数据间是否存在本质差异是核心需求,而t检验、F检验是实现这一目标的经典统计方法。 ...
2026-01-29统计制图(数据可视化)是数据分析的核心呈现载体,它将抽象的数据转化为直观的图表、图形,让数据规律、业务差异与潜在问题一目 ...
2026-01-29箱线图(Box Plot)作为数据分布可视化的核心工具,能清晰呈现数据的中位数、四分位数、异常值等关键统计特征,广泛应用于数据分 ...
2026-01-28在回归分析、机器学习建模等数据分析场景中,多重共线性是高频数据问题——当多个自变量间存在较强的线性关联时,会导致模型系数 ...
2026-01-28数据分析的价值落地,离不开科学方法的支撑。六种核心分析方法——描述性分析、诊断性分析、预测性分析、规范性分析、对比分析、 ...
2026-01-28在机器学习与数据分析领域,特征是连接数据与模型的核心载体,而特征重要性分析则是挖掘数据价值、优化模型性能、赋能业务决策的 ...
2026-01-27关联分析是数据挖掘领域中挖掘数据间潜在关联关系的经典方法,广泛应用于零售购物篮分析、电商推荐、用户行为路径挖掘等场景。而 ...
2026-01-27