大数据时代信什么 数据科学还是老板第六感 尽管大数据的项目已经向很多公司敞开怀抱,但是事实上,大数据技术的缺乏和企业偏好市场嗅觉已然阻碍了大数据发展的进程。 大数据落地的元年已经来临!——在微 ...
2016-05-13传统行业如何“玩”大数据? 企业的数据分析能力金字塔:传统行业如何“玩”大数据? 写在前面 我写这篇文章的初衷源于两个故事: 故事一:一位在互联网行业做数据库架构多年的同事一起吃饭,问起我现 ...
2016-05-13十问大数据安全分析(大数据安全的小船怎样才能不翻?) 人类的生产生活每天都在产生大量的数据,并且产生的速度越来越快。新的攻击手段层出不穷,需要检测的数据越来越多,现有的分析技术不堪重负。 ...
2016-05-13背后 :数据能干什么,值得我们好好思考 5年前 我加入Airbnb成为了一名数据科学家。那个时候,只有很少的人知道这家公司,而整个公司只有7个人。 把我招进来是我们创始人特别具有前瞻性的行为,大数据的热潮 ...
2016-05-13走出大数据行业的两大误区 先从概念上来说,大数据是什么? 其实数据处理从人类诞生时期就有了,古人结绳记事就是基本的统计,统计自己吃了几顿饭打了几次猎等等;再往近说,皇帝每晚翻嫔妃的牌子也是数据处 ...
2016-05-12深度学习不能跟人工智能画上等号 近日百度宣布在一部超算系统Minwa上部署了#深度学习#算法,进而在ImageNet图像识别测试中取得了只有5.98%错误率的新纪录。无独有偶,Facebook也刚刚宣布对部分深度学习代码开 ...
2016-05-12数据可视化,是关于数据视觉表现形式的科学技术研究。其中,这种数据的视觉表现形式被定义为,一种以某种概要形式抽提出来的信息,包括相应信息单位的各种属性和变量。这个是百科上对“数据可视化”的定义,有点晦涩 ...
2016-05-12数据科学家人才危机现象,是FOMO还是Silver? 数据科学家的人才短缺和薪水高涨已经达到了顶板,未来还会持续下去吗? 在过去几年中,高级分析(#大数据#分析)空间一直经历着严重的FOMO(害怕错过)。(译者住 ...
2016-05-12“互联网+工业”下的大数据应用场景分析 工业大数据是一个全新的概念,从字面上理解,工业#大数据#是指在工业领域信息化应用中所产生的大数据。 随着信息化与工业化的深度融合,信息技术渗透到了工业企业产业 ...
2016-05-12大数据时代,数据=财富! 拥有财富、名声、世界上的一切的男人 “商业王”,阿里巴巴,马云。说了一句话,让全世界的人都涌向了市场。“想要我的宝藏吗?如果想要的话,那就到数据上去找吧!我吧我的未来全部都 ...
2016-05-11数据关系挖掘算法、技术难点及应用场景分析 数据关系挖掘作为解决数据孤岛等难题的手段之一,可以有效的帮助企业将多样化的数据进行统一存储并挖掘出其中隐藏的价值,目前在公安、电信、金融等传统行业中的应用 ...
2016-05-11大数据分析的几个极佳用例 时至今日互联网每天新增的数据量达2.5*10^18字节,而全球90%的数据都是在过去的两年间创造出来的。举个直观的例子来说明一下互联网的数据量:假设大西洋里每一升海水代表一个字节的数 ...
2016-05-11数据科学家也良莠不齐 蹩脚数据科学家的10个迹象 1.优秀的数学家可以成为顶尖的数据科学家,但光是会在笔记本上写公式可不行,他们还必须熟练地运用计算机来处理数据。 2.如果他们的所有经验都来自学术机 ...
2016-05-11一、大数据分析的五个基本方面 1,可视化分析 大数据分析的使用者有大数据分析专家,同时还有普通用户,但是他们二者对于大数据分析最基本的要求就是可视化分析,因为可视化分析能够直观的呈现大数据特点,同时能 ...
2016-05-10数据分析第一步 | 做好数据埋点 做产品的同学在产品上线后经常离不开一个词,数据分析。那么要如何进行数据分析呢?不妨先问自己这么几个问题。 你要分析什么问题?是找问题还是验证? 关于这些 ...
2016-05-10大数据时代下的数据资产及其价值 计算机与网络的结合造就了如今的大数据时代。计算机实现了数据的数字化,互联网实现了数据的网络化,而这两者赋予了大数据强大的生命力。随处可见的移动互联网终端、物联网的普 ...
2016-05-1015个关于大数据的事实和真相 跟踪大数据的趋势,研究和统计数据为专业人士提供了一个规划大数据项目的坚实的基础,这里有每个IT专业人士都应该知道的15个有关大数据的重要事实。 每个人都在谈论大数据,从 ...
2016-05-10如何在虚拟环境下测试数据分析? IT安全的发展是围绕数据,生成、收集、收集、存储和分析数据是安全日志的重要部分,但这些大型数据集给存储和处理资源带来巨大压力。 在专业生产环境中,应该部署着 ...
2016-05-10大数据的四大盈利模式,和不得不面对的行业问题 任何事情都有两面性,一如大数据有巨大的价值,同时行业也有这样那样的问题,对于前行未知的道路,风险越大也就意味着收益越大。相比较P2P、O2O这样行业, ...
2016-05-10为什么会产生大数据?大数据如何惠及大众? “大数据的群众基础不好”,换句话说,普通大众用户接受大数据这个概念和事实是需要很大的成本的,我们不要和他们讲大数据有多高大上,也不要为了显得自己牛X用大量 ...
2016-05-10在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15在机器学习入门领域,“鸢尾花数据集(Iris Dataset)” 是理解 “特征值” 与 “目标值” 的最佳案例 —— 它结构清晰、维度适 ...
2025-10-15在数据驱动的业务场景中,零散的指标(如 “GMV”“复购率”)就像 “散落的零件”,无法支撑系统性决策;而科学的指标体系,则 ...
2025-10-15在神经网络模型设计中,“隐藏层层数” 是决定模型能力与效率的核心参数之一 —— 层数过少,模型可能 “欠拟合”(无法捕捉数据 ...
2025-10-14在数字化浪潮中,数据分析师已成为企业 “从数据中挖掘价值” 的核心角色 —— 他们既要能从海量数据中提取有效信息,又要能将分 ...
2025-10-14在企业数据驱动的实践中,“指标混乱” 是最常见的痛点:运营部门说 “复购率 15%”,产品部门说 “复购率 8%”,实则是两者对 ...
2025-10-14在手游行业,“次日留存率” 是衡量一款游戏生死的 “第一道关卡”—— 它不仅反映了玩家对游戏的初始接受度,更直接决定了后续 ...
2025-10-13分库分表,为何而生? 在信息技术发展的早期阶段,数据量相对较小,业务逻辑也较为简单,单库单表的数据库架构就能够满足大多数 ...
2025-10-13在企业数字化转型过程中,“数据孤岛” 是普遍面临的痛点:用户数据散落在 APP 日志、注册系统、客服记录中,订单数据分散在交易 ...
2025-10-13在数字化时代,用户的每一次行为 —— 从电商平台的 “浏览→加购→购买”,到视频 APP 的 “打开→搜索→观看→收藏”,再到银 ...
2025-10-11在机器学习建模流程中,“特征重要性分析” 是连接 “数据” 与 “业务” 的关键桥梁 —— 它不仅能帮我们筛选冗余特征、提升模 ...
2025-10-11在企业的数据体系中,未经分类的数据如同 “杂乱无章的仓库”—— 用户行为日志、订单记录、商品信息混杂存储,CDA(Certified D ...
2025-10-11在 SQL Server 数据库操作中,“数据类型转换” 是高频需求 —— 无论是将字符串格式的日期转为datetime用于筛选,还是将数值转 ...
2025-10-10在科研攻关、工业优化、产品开发中,正交试验(Orthogonal Experiment)因 “用少量试验覆盖多因素多水平组合” 的高效性,成为 ...
2025-10-10在企业数据量从 “GB 级” 迈向 “PB 级” 的过程中,“数据混乱” 的痛点逐渐从 “隐性问题” 变为 “显性瓶颈”:各部门数据口 ...
2025-10-10在深度学习中,“模型如何从错误中学习” 是最关键的问题 —— 而损失函数与反向传播正是回答这一问题的核心技术:损失函数负责 ...
2025-10-09本文将从 “检验本质” 切入,拆解两种方法的核心适用条件、场景边界与实战选择逻辑,结合医学、工业、教育领域的案例,让你明确 ...
2025-10-09