大数据时代信什么 数据科学还是老板第六感 尽管大数据的项目已经向很多公司敞开怀抱,但是事实上,大数据技术的缺乏和企业偏好市场嗅觉已然阻碍了大数据发展的进程。 大数据落地的元年已经来临!——在微 ...
2016-05-13
传统行业如何“玩”大数据? 企业的数据分析能力金字塔:传统行业如何“玩”大数据? 写在前面 我写这篇文章的初衷源于两个故事: 故事一:一位在互联网行业做数据库架构多年的同事一起吃饭,问起我现 ...
2016-05-13
十问大数据安全分析(大数据安全的小船怎样才能不翻?) 人类的生产生活每天都在产生大量的数据,并且产生的速度越来越快。新的攻击手段层出不穷,需要检测的数据越来越多,现有的分析技术不堪重负。 ...
2016-05-13
背后 :数据能干什么,值得我们好好思考 5年前 我加入Airbnb成为了一名数据科学家。那个时候,只有很少的人知道这家公司,而整个公司只有7个人。 把我招进来是我们创始人特别具有前瞻性的行为,大数据的热潮 ...
2016-05-13走出大数据行业的两大误区 先从概念上来说,大数据是什么? 其实数据处理从人类诞生时期就有了,古人结绳记事就是基本的统计,统计自己吃了几顿饭打了几次猎等等;再往近说,皇帝每晚翻嫔妃的牌子也是数据处 ...
2016-05-12深度学习不能跟人工智能画上等号 近日百度宣布在一部超算系统Minwa上部署了#深度学习#算法,进而在ImageNet图像识别测试中取得了只有5.98%错误率的新纪录。无独有偶,Facebook也刚刚宣布对部分深度学习代码开 ...
2016-05-12
数据可视化,是关于数据视觉表现形式的科学技术研究。其中,这种数据的视觉表现形式被定义为,一种以某种概要形式抽提出来的信息,包括相应信息单位的各种属性和变量。这个是百科上对“数据可视化”的定义,有点晦涩 ...
2016-05-12
数据科学家人才危机现象,是FOMO还是Silver? 数据科学家的人才短缺和薪水高涨已经达到了顶板,未来还会持续下去吗? 在过去几年中,高级分析(#大数据#分析)空间一直经历着严重的FOMO(害怕错过)。(译者住 ...
2016-05-12
“互联网+工业”下的大数据应用场景分析 工业大数据是一个全新的概念,从字面上理解,工业#大数据#是指在工业领域信息化应用中所产生的大数据。 随着信息化与工业化的深度融合,信息技术渗透到了工业企业产业 ...
2016-05-12大数据时代,数据=财富! 拥有财富、名声、世界上的一切的男人 “商业王”,阿里巴巴,马云。说了一句话,让全世界的人都涌向了市场。“想要我的宝藏吗?如果想要的话,那就到数据上去找吧!我吧我的未来全部都 ...
2016-05-11
数据关系挖掘算法、技术难点及应用场景分析 数据关系挖掘作为解决数据孤岛等难题的手段之一,可以有效的帮助企业将多样化的数据进行统一存储并挖掘出其中隐藏的价值,目前在公安、电信、金融等传统行业中的应用 ...
2016-05-11
大数据分析的几个极佳用例 时至今日互联网每天新增的数据量达2.5*10^18字节,而全球90%的数据都是在过去的两年间创造出来的。举个直观的例子来说明一下互联网的数据量:假设大西洋里每一升海水代表一个字节的数 ...
2016-05-11
数据科学家也良莠不齐 蹩脚数据科学家的10个迹象 1.优秀的数学家可以成为顶尖的数据科学家,但光是会在笔记本上写公式可不行,他们还必须熟练地运用计算机来处理数据。 2.如果他们的所有经验都来自学术机 ...
2016-05-11一、大数据分析的五个基本方面 1,可视化分析 大数据分析的使用者有大数据分析专家,同时还有普通用户,但是他们二者对于大数据分析最基本的要求就是可视化分析,因为可视化分析能够直观的呈现大数据特点,同时能 ...
2016-05-10
数据分析第一步 | 做好数据埋点 做产品的同学在产品上线后经常离不开一个词,数据分析。那么要如何进行数据分析呢?不妨先问自己这么几个问题。 你要分析什么问题?是找问题还是验证? 关于这些 ...
2016-05-10大数据时代下的数据资产及其价值 计算机与网络的结合造就了如今的大数据时代。计算机实现了数据的数字化,互联网实现了数据的网络化,而这两者赋予了大数据强大的生命力。随处可见的移动互联网终端、物联网的普 ...
2016-05-10
15个关于大数据的事实和真相 跟踪大数据的趋势,研究和统计数据为专业人士提供了一个规划大数据项目的坚实的基础,这里有每个IT专业人士都应该知道的15个有关大数据的重要事实。 每个人都在谈论大数据,从 ...
2016-05-10
如何在虚拟环境下测试数据分析? IT安全的发展是围绕数据,生成、收集、收集、存储和分析数据是安全日志的重要部分,但这些大型数据集给存储和处理资源带来巨大压力。 在专业生产环境中,应该部署着 ...
2016-05-10
大数据的四大盈利模式,和不得不面对的行业问题 任何事情都有两面性,一如大数据有巨大的价值,同时行业也有这样那样的问题,对于前行未知的道路,风险越大也就意味着收益越大。相比较P2P、O2O这样行业, ...
2016-05-10
为什么会产生大数据?大数据如何惠及大众? “大数据的群众基础不好”,换句话说,普通大众用户接受大数据这个概念和事实是需要很大的成本的,我们不要和他们讲大数据有多高大上,也不要为了显得自己牛X用大量 ...
2016-05-10在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01在时间序列预测任务中,LSTM(长短期记忆网络)凭借对时序依赖关系的捕捉能力成为主流模型。但很多开发者在实操中会遇到困惑:用 ...
2025-12-01引言:数据时代的“透视镜”与“掘金者” 在数字经济浪潮下,数据已成为企业决策的核心资产,而CDA数据分析师正是挖掘数据价值的 ...
2025-12-01数据分析师的日常,常始于一堆“毫无章法”的数据点:电商后台导出的零散订单记录、APP埋点收集的无序用户行为日志、传感器实时 ...
2025-11-28在MySQL数据库运维中,“query end”是查询执行生命周期的收尾阶段,理论上耗时极短——主要完成结果集封装、资源释放、事务状态 ...
2025-11-28在CDA(Certified Data Analyst)数据分析师的工具包中,透视分析方法是处理表结构数据的“瑞士军刀”——无需复杂代码,仅通过 ...
2025-11-28在统计分析中,数据的分布形态是决定“用什么方法分析、信什么结果”的底层逻辑——它如同数据的“性格”,直接影响着描述统计的 ...
2025-11-27在电商订单查询、用户信息导出等业务场景中,技术人员常面临一个选择:是一次性查询500条数据,还是分5次每次查询100条?这个问 ...
2025-11-27对数据分析从业者和学生而言,表结构数据是最基础也最核心的分析载体——CRM系统的用户表、门店的销售明细表、仓库的库存表,都 ...
2025-11-27在业务数据可视化中,热力图(Heat Map)是传递“数据密度与分布特征”的核心工具——它通过颜色深浅直观呈现数据值的高低,让“ ...
2025-11-26在企业数字化转型中,业务数据分析师是连接数据与决策的核心纽带。但“数据分析师”并非单一角色,从初级到高级,其职责边界、能 ...
2025-11-26