京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据时代要识数
怎么样才算识数,怎么才能做到识数,在罗辑思维的【得到】APP上开设付费专栏《硅谷来信》的吴军博士给出了自己的理解和建议。
大约从4年前开始,我们就说进入了大数据时代,大约从2年前开始,它的应用越来越普及,使得我们社会运行的效率(很多大公司赚钱的效率)大大提升。
在思维上,我们也接受了数据驱动的思维方式。在这样一个时代,我们都必须做到识数,而不是看到一个数据后,给出情绪化的反应。
几个月前,王健林说的“挣一个亿”的小目标,经常被大家拿来调侃。因为在大家的眼里,一个亿是一个巨大无比的数字,甚至近乎一个天文数字。即便在人均GDP为五万元的美国,95%以上的人一辈子是挣不到一亿人民币的。
但是对一个国家而言,一个亿就是一个非常小的数字了。比如中国政府的债务。根据国际货币基金组织提供的数据,截止到2016年3月底,是28万亿人民币。
哇,25万亿耶,是不是永远都还不清了?
其实,一个亿,对任何一个国家来说,都不是什么了不得的数字,对中国来说,一万亿都只是一小颗花生米而已。因为中国当时的GDP大约是68万亿人民币,债务占到GDP的41%左右。
41%,都快接近一半了,那这个债务水平算不算高呢?
对一个年收入10万的家庭来说,40%的债务,即4万的债务确实很高。但是对于中央政府(有些国家叫联邦政府),或者像中国这样可以得到中央拨款支持的地方政府,这个比例非常低。
美国联邦政府的国债到今天累计已经达到21万亿美元(大约相当于146万亿人民币),占其GDP的125%,这个还不算州政府借的一些钱呢。
日本的国债占GDP的200%,法国占100%,英国占90%,意大利占130%,并且都在上升。只有德国占73%左右,但是也比中国高得多。
怎么样,这样一比较,中国算是非常非常低的吧?其实,越是经济不太好的国家,债务水平反而越低。比如俄罗斯,债务只占了GDP的不到20%。
对中国这样的国家,什么算是大数呢?十万亿或者一百万亿!100万亿,用数字表示就是100,000,000,000,000,也就是1后面14个零。如果用小时来度量宇宙的年龄,宇宙到今天大约是100万亿小时。
我们不仅对大数字要敏感,对小数字也应如此。吴军老师说,一位离开Google到某个电商公司负责广告业务的员工有一天跟他抱怨说,他的老板对0.8%的广告点击率相当不满意,觉得太低了。当时,正好北大光华管理学院的一位统计学教授也在场,他开玩笑地说“你回去和他讲,他怎么不上天呢?”
实际上,0.8%的点击率对互联网展示广告来说已经很高了,因为整个行业的水平大约是0.4%。搜索广告的点击率要高很多,但也只有2%。因此,数据的大和小完全要看场景,在互联网广告这个场景下,即使不到1%,也是很大的数字。
比广告点击率更小的数字是支付系统的出错率。在这个行业,千分之一都是很大的数了。因为这个领域最关键的事控制被欺诈的概率,如果做不到千分之一,就不用在这个行业混了。
一般来讲,这个行业的欺诈率是用基点(也就是万分之一,即0.01%)来衡量的。大部分信用卡公司和银行都能讲欺诈率控制在几个基点这样的数量级。支付宝因为有大数据支持,大约能做到一个基点以下,这就使得其他产品难以和他竞争。
与大和小相比,有些时候“准确率”(或者比率)这样的概念更是随着应用场景的不同,标准相差很多。
比如语音识别,如果准确率达不到95%,可用性就不是很好。而对于指纹识别,如果做不到99%以上,就没有太大的意义。
我们经常看到这样的洗涤剂广告,能够杀死99%的细菌。事实上,对那些细菌特别多的东西,杀死99%是远远不够的。因为细菌的繁殖在合适的环境里繁殖速度很快,一天下来可以繁殖上万倍。但是,如果一个过滤器能够过滤掉99%的PM2.5颗粒,在室内大致可以满意了。
那我们怎么知道每一个领域数字的大和小呢?怎样才能不被人忽悠呢?吴军老师说可以从三个层次培养自己对数字的敏感性。
首先,不要一看到别人给的数字,就被唬住了。对它既要关注,也要留个心眼。要牢记数字的大小和场景密切相关。
其次,对于很多事情要有大致的概念,不需要了解细节,但在数量级上要有常识。比如我们在报纸上经常看到“豪宅”两个字,标题党常常用它来吸引眼球。其实只要把那个价钱放到一个地区和当地的房价或者收入水平做一个对比,就能大致做出判断了。
数量级的概念也就是10的多少次方,一个数量级的差距就是差10倍。
最后,我们看到一个数字,在下结论之前,最好问一下自己,它的参照物是什么,凡事大小多少都需要有参照物,在互联网发达的今天,这些参照物并不难找。
对数字敏感,很多时候是我们不吃亏,乃至事业成功的基础。
最后,拜托你帮我个忙,如果你觉得这篇文章对你有所启发,欢迎转发到朋友圈让你的朋友们也看看。谢谢你!
我把每一次的写作都当作一次分享的机会,希望借此遇见更好的自己。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
数据分析的核心价值在于用数据驱动决策,而指标作为数据的“载体”,其选取的合理性直接决定分析结果的有效性。选对指标能精准定 ...
2026-01-23在MySQL查询编写中,我们习惯按“SELECT → FROM → WHERE → ORDER BY”的语法顺序组织语句,直觉上认为代码顺序即执行顺序。但 ...
2026-01-23数字化转型已从企业“可选项”升级为“必答题”,其核心本质是通过数据驱动业务重构、流程优化与模式创新,实现从传统运营向智能 ...
2026-01-23CDA持证人已遍布在世界范围各行各业,包括世界500强企业、顶尖科技独角兽、大型金融机构、国企事业单位、国家行政机关等等,“CDA数据分析师”人才队伍遵守着CDA职业道德准则,发挥着专业技能,已成为支撑科技发展的核心力量。 ...
2026-01-22在数字化时代,企业积累的海量数据如同散落的珍珠,而数据模型就是串联这些珍珠的线——它并非简单的数据集合,而是对现实业务场 ...
2026-01-22在数字化运营场景中,用户每一次点击、浏览、交互都构成了行为轨迹,这些轨迹交织成海量的用户行为路径。但并非所有路径都具备业 ...
2026-01-22在数字化时代,企业数据资产的价值持续攀升,数据安全已从“合规底线”升级为“生存红线”。企业数据安全管理方法论以“战略引领 ...
2026-01-22在SQL数据分析与业务查询中,日期数据是高频处理对象——订单创建时间、用户注册日期、数据统计周期等场景,都需对日期进行格式 ...
2026-01-21在实际业务数据分析中,单一数据表往往无法满足需求——用户信息存储在用户表、消费记录在订单表、商品详情在商品表,想要挖掘“ ...
2026-01-21在数字化转型浪潮中,企业数据已从“辅助资源”升级为“核心资产”,而高效的数据管理则是释放数据价值的前提。企业数据管理方法 ...
2026-01-21在数字化商业环境中,数据已成为企业优化运营、抢占市场、规避风险的核心资产。但商业数据分析绝非“堆砌数据、生成报表”的简单 ...
2026-01-20定量报告的核心价值是传递数据洞察,但密密麻麻的表格、复杂的计算公式、晦涩的数值罗列,往往让读者望而却步,导致核心信息被淹 ...
2026-01-20在CDA(Certified Data Analyst)数据分析师的工作场景中,“精准分类与回归预测”是高频核心需求——比如预测用户是否流失、判 ...
2026-01-20在建筑工程造价工作中,清单汇总分类是核心环节之一,尤其是针对楼梯、楼梯间这类包含多个分项工程(如混凝土浇筑、钢筋制作、扶 ...
2026-01-19数据清洗是数据分析的“前置必修课”,其核心目标是剔除无效信息、修正错误数据,让原始数据具备准确性、一致性与可用性。在实际 ...
2026-01-19在CDA(Certified Data Analyst)数据分析师的日常工作中,常面临“无标签高维数据难以归类、群体规律模糊”的痛点——比如海量 ...
2026-01-19在数据仓库与数据分析体系中,维度表与事实表是构建结构化数据模型的核心组件,二者如同“骨架”与“血肉”,协同支撑起各类业务 ...
2026-01-16在游戏行业“存量竞争”的当下,玩家留存率直接决定游戏的生命周期与商业价值。一款游戏即便拥有出色的画面与玩法,若无法精准识 ...
2026-01-16为配合CDA考试中心的 2025 版 CDA Level III 认证新大纲落地,CDA 网校正式推出新大纲更新后的第一套官方模拟题。该模拟题严格遵 ...
2026-01-16在数据驱动决策的时代,数据分析已成为企业运营、产品优化、业务增长的核心工具。但实际工作中,很多数据分析项目看似流程完整, ...
2026-01-15