京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据时代要识数
怎么样才算识数,怎么才能做到识数,在罗辑思维的【得到】APP上开设付费专栏《硅谷来信》的吴军博士给出了自己的理解和建议。
大约从4年前开始,我们就说进入了大数据时代,大约从2年前开始,它的应用越来越普及,使得我们社会运行的效率(很多大公司赚钱的效率)大大提升。
在思维上,我们也接受了数据驱动的思维方式。在这样一个时代,我们都必须做到识数,而不是看到一个数据后,给出情绪化的反应。
几个月前,王健林说的“挣一个亿”的小目标,经常被大家拿来调侃。因为在大家的眼里,一个亿是一个巨大无比的数字,甚至近乎一个天文数字。即便在人均GDP为五万元的美国,95%以上的人一辈子是挣不到一亿人民币的。
但是对一个国家而言,一个亿就是一个非常小的数字了。比如中国政府的债务。根据国际货币基金组织提供的数据,截止到2016年3月底,是28万亿人民币。
哇,25万亿耶,是不是永远都还不清了?
其实,一个亿,对任何一个国家来说,都不是什么了不得的数字,对中国来说,一万亿都只是一小颗花生米而已。因为中国当时的GDP大约是68万亿人民币,债务占到GDP的41%左右。
41%,都快接近一半了,那这个债务水平算不算高呢?
对一个年收入10万的家庭来说,40%的债务,即4万的债务确实很高。但是对于中央政府(有些国家叫联邦政府),或者像中国这样可以得到中央拨款支持的地方政府,这个比例非常低。
美国联邦政府的国债到今天累计已经达到21万亿美元(大约相当于146万亿人民币),占其GDP的125%,这个还不算州政府借的一些钱呢。
日本的国债占GDP的200%,法国占100%,英国占90%,意大利占130%,并且都在上升。只有德国占73%左右,但是也比中国高得多。
怎么样,这样一比较,中国算是非常非常低的吧?其实,越是经济不太好的国家,债务水平反而越低。比如俄罗斯,债务只占了GDP的不到20%。
对中国这样的国家,什么算是大数呢?十万亿或者一百万亿!100万亿,用数字表示就是100,000,000,000,000,也就是1后面14个零。如果用小时来度量宇宙的年龄,宇宙到今天大约是100万亿小时。
我们不仅对大数字要敏感,对小数字也应如此。吴军老师说,一位离开Google到某个电商公司负责广告业务的员工有一天跟他抱怨说,他的老板对0.8%的广告点击率相当不满意,觉得太低了。当时,正好北大光华管理学院的一位统计学教授也在场,他开玩笑地说“你回去和他讲,他怎么不上天呢?”
实际上,0.8%的点击率对互联网展示广告来说已经很高了,因为整个行业的水平大约是0.4%。搜索广告的点击率要高很多,但也只有2%。因此,数据的大和小完全要看场景,在互联网广告这个场景下,即使不到1%,也是很大的数字。
比广告点击率更小的数字是支付系统的出错率。在这个行业,千分之一都是很大的数了。因为这个领域最关键的事控制被欺诈的概率,如果做不到千分之一,就不用在这个行业混了。
一般来讲,这个行业的欺诈率是用基点(也就是万分之一,即0.01%)来衡量的。大部分信用卡公司和银行都能讲欺诈率控制在几个基点这样的数量级。支付宝因为有大数据支持,大约能做到一个基点以下,这就使得其他产品难以和他竞争。
与大和小相比,有些时候“准确率”(或者比率)这样的概念更是随着应用场景的不同,标准相差很多。
比如语音识别,如果准确率达不到95%,可用性就不是很好。而对于指纹识别,如果做不到99%以上,就没有太大的意义。
我们经常看到这样的洗涤剂广告,能够杀死99%的细菌。事实上,对那些细菌特别多的东西,杀死99%是远远不够的。因为细菌的繁殖在合适的环境里繁殖速度很快,一天下来可以繁殖上万倍。但是,如果一个过滤器能够过滤掉99%的PM2.5颗粒,在室内大致可以满意了。
那我们怎么知道每一个领域数字的大和小呢?怎样才能不被人忽悠呢?吴军老师说可以从三个层次培养自己对数字的敏感性。
首先,不要一看到别人给的数字,就被唬住了。对它既要关注,也要留个心眼。要牢记数字的大小和场景密切相关。
其次,对于很多事情要有大致的概念,不需要了解细节,但在数量级上要有常识。比如我们在报纸上经常看到“豪宅”两个字,标题党常常用它来吸引眼球。其实只要把那个价钱放到一个地区和当地的房价或者收入水平做一个对比,就能大致做出判断了。
数量级的概念也就是10的多少次方,一个数量级的差距就是差10倍。
最后,我们看到一个数字,在下结论之前,最好问一下自己,它的参照物是什么,凡事大小多少都需要有参照物,在互联网发达的今天,这些参照物并不难找。
对数字敏感,很多时候是我们不吃亏,乃至事业成功的基础。
最后,拜托你帮我个忙,如果你觉得这篇文章对你有所启发,欢迎转发到朋友圈让你的朋友们也看看。谢谢你!
我把每一次的写作都当作一次分享的机会,希望借此遇见更好的自己。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01在时间序列预测任务中,LSTM(长短期记忆网络)凭借对时序依赖关系的捕捉能力成为主流模型。但很多开发者在实操中会遇到困惑:用 ...
2025-12-01引言:数据时代的“透视镜”与“掘金者” 在数字经济浪潮下,数据已成为企业决策的核心资产,而CDA数据分析师正是挖掘数据价值的 ...
2025-12-01数据分析师的日常,常始于一堆“毫无章法”的数据点:电商后台导出的零散订单记录、APP埋点收集的无序用户行为日志、传感器实时 ...
2025-11-28在MySQL数据库运维中,“query end”是查询执行生命周期的收尾阶段,理论上耗时极短——主要完成结果集封装、资源释放、事务状态 ...
2025-11-28在CDA(Certified Data Analyst)数据分析师的工具包中,透视分析方法是处理表结构数据的“瑞士军刀”——无需复杂代码,仅通过 ...
2025-11-28在统计分析中,数据的分布形态是决定“用什么方法分析、信什么结果”的底层逻辑——它如同数据的“性格”,直接影响着描述统计的 ...
2025-11-27在电商订单查询、用户信息导出等业务场景中,技术人员常面临一个选择:是一次性查询500条数据,还是分5次每次查询100条?这个问 ...
2025-11-27