大数据时代要识数
怎么样才算识数,怎么才能做到识数,在罗辑思维的【得到】APP上开设付费专栏《硅谷来信》的吴军博士给出了自己的理解和建议。
大约从4年前开始,我们就说进入了大数据时代,大约从2年前开始,它的应用越来越普及,使得我们社会运行的效率(很多大公司赚钱的效率)大大提升。
在思维上,我们也接受了数据驱动的思维方式。在这样一个时代,我们都必须做到识数,而不是看到一个数据后,给出情绪化的反应。
几个月前,王健林说的“挣一个亿”的小目标,经常被大家拿来调侃。因为在大家的眼里,一个亿是一个巨大无比的数字,甚至近乎一个天文数字。即便在人均GDP为五万元的美国,95%以上的人一辈子是挣不到一亿人民币的。
但是对一个国家而言,一个亿就是一个非常小的数字了。比如中国政府的债务。根据国际货币基金组织提供的数据,截止到2016年3月底,是28万亿人民币。
哇,25万亿耶,是不是永远都还不清了?
其实,一个亿,对任何一个国家来说,都不是什么了不得的数字,对中国来说,一万亿都只是一小颗花生米而已。因为中国当时的GDP大约是68万亿人民币,债务占到GDP的41%左右。
41%,都快接近一半了,那这个债务水平算不算高呢?
对一个年收入10万的家庭来说,40%的债务,即4万的债务确实很高。但是对于中央政府(有些国家叫联邦政府),或者像中国这样可以得到中央拨款支持的地方政府,这个比例非常低。
美国联邦政府的国债到今天累计已经达到21万亿美元(大约相当于146万亿人民币),占其GDP的125%,这个还不算州政府借的一些钱呢。
日本的国债占GDP的200%,法国占100%,英国占90%,意大利占130%,并且都在上升。只有德国占73%左右,但是也比中国高得多。
怎么样,这样一比较,中国算是非常非常低的吧?其实,越是经济不太好的国家,债务水平反而越低。比如俄罗斯,债务只占了GDP的不到20%。
对中国这样的国家,什么算是大数呢?十万亿或者一百万亿!100万亿,用数字表示就是100,000,000,000,000,也就是1后面14个零。如果用小时来度量宇宙的年龄,宇宙到今天大约是100万亿小时。
我们不仅对大数字要敏感,对小数字也应如此。吴军老师说,一位离开Google到某个电商公司负责广告业务的员工有一天跟他抱怨说,他的老板对0.8%的广告点击率相当不满意,觉得太低了。当时,正好北大光华管理学院的一位统计学教授也在场,他开玩笑地说“你回去和他讲,他怎么不上天呢?”
实际上,0.8%的点击率对互联网展示广告来说已经很高了,因为整个行业的水平大约是0.4%。搜索广告的点击率要高很多,但也只有2%。因此,数据的大和小完全要看场景,在互联网广告这个场景下,即使不到1%,也是很大的数字。
比广告点击率更小的数字是支付系统的出错率。在这个行业,千分之一都是很大的数了。因为这个领域最关键的事控制被欺诈的概率,如果做不到千分之一,就不用在这个行业混了。
一般来讲,这个行业的欺诈率是用基点(也就是万分之一,即0.01%)来衡量的。大部分信用卡公司和银行都能讲欺诈率控制在几个基点这样的数量级。支付宝因为有大数据支持,大约能做到一个基点以下,这就使得其他产品难以和他竞争。
与大和小相比,有些时候“准确率”(或者比率)这样的概念更是随着应用场景的不同,标准相差很多。
比如语音识别,如果准确率达不到95%,可用性就不是很好。而对于指纹识别,如果做不到99%以上,就没有太大的意义。
我们经常看到这样的洗涤剂广告,能够杀死99%的细菌。事实上,对那些细菌特别多的东西,杀死99%是远远不够的。因为细菌的繁殖在合适的环境里繁殖速度很快,一天下来可以繁殖上万倍。但是,如果一个过滤器能够过滤掉99%的PM2.5颗粒,在室内大致可以满意了。
那我们怎么知道每一个领域数字的大和小呢?怎样才能不被人忽悠呢?吴军老师说可以从三个层次培养自己对数字的敏感性。
首先,不要一看到别人给的数字,就被唬住了。对它既要关注,也要留个心眼。要牢记数字的大小和场景密切相关。
其次,对于很多事情要有大致的概念,不需要了解细节,但在数量级上要有常识。比如我们在报纸上经常看到“豪宅”两个字,标题党常常用它来吸引眼球。其实只要把那个价钱放到一个地区和当地的房价或者收入水平做一个对比,就能大致做出判断了。
数量级的概念也就是10的多少次方,一个数量级的差距就是差10倍。
最后,我们看到一个数字,在下结论之前,最好问一下自己,它的参照物是什么,凡事大小多少都需要有参照物,在互联网发达的今天,这些参照物并不难找。
对数字敏感,很多时候是我们不吃亏,乃至事业成功的基础。
最后,拜托你帮我个忙,如果你觉得这篇文章对你有所启发,欢迎转发到朋友圈让你的朋友们也看看。谢谢你!
我把每一次的写作都当作一次分享的机会,希望借此遇见更好的自己。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
数据分析在当今信息时代发挥着重要作用。单因素方差分析(One-Way ANOVA)是一种关键的统计方法,用于比较三个或更多独立样本组 ...
2025-04-25CDA持证人简介: 居瑜 ,CDA一级持证人国企财务经理,13年财务管理运营经验,在数据分析就业和实践经验方面有着丰富的积累和经 ...
2025-04-25在当今数字化时代,数据分析师的重要性与日俱增。但许多人在踏上这条职业道路时,往往充满疑惑: 如何成为一名数据分析师?成为 ...
2025-04-24以下的文章内容来源于刘静老师的专栏,如果您想阅读专栏《刘静:10大业务分析模型突破业务瓶颈》,点击下方链接 https://edu.cda ...
2025-04-23大咖简介: 刘凯,CDA大咖汇特邀讲师,DAMA中国分会理事,香港金管局特聘数据管理专家,拥有丰富的行业经验。本文将从数据要素 ...
2025-04-22CDA持证人简介 刘伟,美国 NAU 大学计算机信息技术硕士, CDA数据分析师三级持证人,现任职于江苏宝应农商银行数据治理岗。 学 ...
2025-04-21持证人简介:贺渲雯 ,CDA 数据分析师一级持证人,互联网行业数据分析师 今天我将为大家带来一个关于用户私域用户质量数据分析 ...
2025-04-18一、CDA持证人介绍 在数字化浪潮席卷商业领域的当下,数据分析已成为企业发展的关键驱动力。为助力大家深入了解数据分析在电商行 ...
2025-04-17CDA持证人简介:居瑜 ,CDA一级持证人,国企财务经理,13年财务管理运营经验,在数据分析实践方面积累了丰富的行业经验。 一、 ...
2025-04-16持证人简介: CDA持证人刘凌峰,CDA L1持证人,微软认证讲师(MCT)金山办公最有价值专家(KVP),工信部高级项目管理师,拥有 ...
2025-04-15持证人简介:CDA持证人黄葛英,ICF国际教练联盟认证教练,前字节跳动销售主管,拥有丰富的行业经验。在实际生活中,我们可能会 ...
2025-04-14在 Python 编程学习与实践中,Anaconda 是一款极为重要的工具。它作为一个开源的 Python 发行版本,集成了众多常用的科学计算库 ...
2025-04-14随着大数据时代的深入发展,数据运营成为企业不可或缺的岗位之一。这个职位的核心是通过收集、整理和分析数据,帮助企业做出科 ...
2025-04-11持证人简介:CDA持证人黄葛英,ICF国际教练联盟认证教练,前字节跳动销售主管,拥有丰富的行业经验。 本次分享我将以教培行业为 ...
2025-04-11近日《2025中国城市长租市场发展蓝皮书》(下称《蓝皮书》)正式发布。《蓝皮书》指出,当前我国城市住房正经历从“增量扩张”向 ...
2025-04-10在数字化时代的浪潮中,数据已经成为企业决策和运营的核心。每一位客户,每一次交易,都承载着丰富的信息和价值。 如何在海量客 ...
2025-04-09数据是数字化的基础。随着工业4.0的推进,企业生产运作过程中的在线数据变得更加丰富;而互联网、新零售等C端应用的丰富多彩,产 ...
2025-04-094月7日,美国关税政策对全球金融市场的冲击仍在肆虐,周一亚市早盘,美股股指、原油期货、加密货币、贵金属等资产齐齐重挫,市场 ...
2025-04-08背景 3月26日,科技圈迎来一则重磅消息,苹果公司宣布向浙江大学捐赠 3000 万元人民币,用于支持编程教育。 这一举措并非偶然, ...
2025-04-07在当今数据驱动的时代,数据分析能力备受青睐,数据分析能力频繁出现在岗位需求的描述中,不分岗位的任职要求中,会特意标出“熟 ...
2025-04-03